Agility 2018 Hands-on Lab Guide

Contents:

1	Class 1: Introduction to ADC Deployments with BIG-IP LTM	5
2	Class 2: Building the F5 Fabric	25
3	Class 3: BIG-IP® Local Traffic Manager (LTM) - v13.1 Lab Guide	57
4	Class 4: Troubleshoot with tcpdump and Wireshark	107
5	Resilient Data Center Architectures with F5 BIG-IP	123

Class 1: Introduction to ADC Deployments with BIG-IP LTM

Welcome to the ADC Deployments with BIG-IP LTM hands-on lab session. These labs are intended to guide you through creating basic ADC deployments and completing common administrative tasks. This guide is intended to complement lecture material provided during the ADC Deployments with BIG-IP LTM as well as a reference guide that can be referred to after the class.

1.1 Lab Network Setup

In the interest of focusing as much time as possible configuring your application delivery controller, we have provided some resources and basic setup ahead of time. These are:

- Cloud-based lab environment complete with a Windows workstation, a virtual BIG-IP (VE), a virtual BIG-IQ acting as a logging node, a virtual BIG-IQ acting as a management node, and a back-end banking application running on a Linux web server.
- The virtual BIG-IP has been pre-licensed

If you wish to replicate these labs in your office you will need to perform these steps accordingly. Additional lab resources are provided as illustrated in the diagram on the next page.

To access the lab environment, you will require a web browser and Remote Desktop Protocol (RDP) client software. The web browser will be used to access the lab training portal. The RDP client will be used to connect to a Windows workstation, where you will be able to access the BIG-IP and BIG-IQ management interfaces (HTTPS, SSH).

You class instructor will provide additional lab access details.

1.1.1 Lab Diagram

1.1.2 Timing for Labs

The time it takes to perform each lab varies and is mostly dependent on accurately completing steps. This can never be accurately predicted but we strived to derive an estimate among several people each having a different level of experience. Below is an estimate of how long it will take for each lab:

LAB Name (Description)	Time Allocated
LAB 1 – Configure Virtual Servers and Pools	35 minutes
LAB 2 – Work with SNAT, Profiles, and Monitors	45 minutes
LAB 3 – Use SSL Offload, Best Practices, and iApps	40 minutes
LAB 4 – Configure High Availability	30 minutes

1.2 Module 1: BIG-IP LTM Basic Configuration

In this module you will learn the basics of configuring BIG-IP Local Traffic Manager

1.2.1 Lab 1: Configure Virtual Servers and Pools

In this lab you will explore the BIG-IP configuration utility, create your first web application, and configure different types of virtual servers and load balancing methods.

Task 1 – Connect to Ravello and Examine the BIG-IP Configuration Utility

1. Use a browser to access http://IP_address with the IP address supplied by your instructor, and log in using the username and password supplied by your instructor.

- 2. For ADC Implementations with LTM click View.
- 3. Copy the IP address of the Windows 7 External VM, and then use RDP to access the IP address.
- 4. Log into the Windows workstation as **external_user** / **password**.
- 5. Open Chrome and click the **BIGIP_A** bookmark.
- 6. Log into the BIG-IP system as admin / admin.
- 7. From the left menu select Local Traffic.

The Local Traffic menu is where most ADC functions are performed.

8. From the left menu select Network.

The **Network** menu is where you configure elements for routing and switching.

9. From the left menu select System.

The **System** menu is where you configure DNS and NTP settings, manage licensing, perform software updates, and import SSL certificates.

10. Open the **Network > VLANs > VLAN List** page.

A Name	Application	≑ Tag	Untagged Interfaces	Tagged Interfaces	Partition / Path
external		4093	1.1		Common
internal		4094	1.2		Common

Two VLANs were already created, an **external** VLAN for outside access, and an **internal** VLAN for access to the internal network.

11. Open the Network > Self IPs > Self IP List page.

This BIG-IP system is configured with four self IP addresses. Each VLAN has a standard self IP address (ending in **.241**) and a floating self IP address (ending in **.240**). We'll use the floating self IP addresses during the high availability exercise.

12. Open the **Network > Routes** page.

This BIG-IP system is configured with a default gateway route for outbound internet access (on **10.1.10.1**).

Task 2 – Create a Basic Web Application

Examine the lab diagram on page 2. We'll be creating a web application for an application that is stored on three web servers (at **10.1.20.11 – 10.1.20.13**).

1. Open the Local Traffic > Pools > Pool List page and click Create.

Local	Local Traffic » Pools : Pool List									
- 10F	Pool List									
		1								
*			Search							Create
	🚽 Status 🔺 Name					Description	Application	Members	≑ Par	tition / Path
No rea	cords to display.									

2. Use the following information for the new pool. For fields that are not specified, leave them set to the default settings.

Form field	Value
Name	http_pool
New Members	Node Name: node1 Address: 10.1.20.11 Service Port: 80 (Click Add)
	Node Name: node 2 Address 10.1.20.12 Service Port: 80 (Click Add)
	Node Name: node 3 Address: 10.1.20.13 Service Port: 80 (Click Add)

3. Click Finished.

- 4. Open the Local Traffic > Virtual Servers > Virtual Server List page and click Create.
- 5. Use the following information for the new virtual server, and then click Finished.

Form field	Value
Name	http_virtual
Destination Address/ Mask	10.1.10.20
Service Port	80
Resources > Default Pool	http_pool

- 6. Use a new tab to access http://10.1.10.20.
- 7. Use Ctrl + F5 to reload the page several times.

You can see that page elements are coming from all three web servers. That's all it takes to create a basic web application on the BIG-IP system.

- 8. Close the tab.
- 9. In the Configuration Utility, open the Local Traffic > Pools > Statistics page.
- 10. Expand the http_pool by clicking on the + icon.

You use the **Statistics** page to identify the amount of traffic sent to the pool members. Notice that the requests are evenly distributed across all three web servers.

11. Select the http_pool checkbox, and then click Reset.

	💌 Status	٠	▲ Pool	Pool Member	Partition / Path	≑ In	≑ Out	≑ In	≑ Out
			http_pool		Common	611.4K	15.4M	936	1.6K
				node1:80	Common	275.5K	8.6M	467	900
				node2:80	Common	163.4K	3.9M	255	417
				node3:80	Common	172.4K	2.8M	214	292
Res	set								

Task 3 – Create a Forwarding Virtual Server

1. Use a new tab to attempt direct access to an internal web server at http://10.1.20.41.

Currently you are unable to access resources on the internal network from the external Windows workstation.

- 2. Open the Start menu and type cmd, then right-click cmd.exe and select Run as administrator, and then click Yes.
- 3. At the command prompt, type (or copy and paste):

route add 10.1.20.0 mask 255.255.255.0 10.1.10.241

This adds a route to the **10.1.20.0** network through the external self IP address (**10.1.10.241**) of the BIG-IP system.

4. Reload the page directed at http://10.1.20.41.

The request fails again, as the BIG-IP system does not have a listener to forward this request to the internal network.

- 5. In the Configuration Utility, open the Local Traffic > Virtual Servers > Virtual Server List page and click Create.
- 6. Use the following information for the new virtual server, and then click Finished.

Form field	Value
Name	forward_virtual
Туре	Forwarding (IP)
Destination Address/ Mask	10.1.20.0/24
Service Port	* All Ports
Protocol	* All Protocols

This virtual server provides access to the 10.1.20.0/24 network on all ports and all protocols.

7. Reload the page directed at http://10.1.20.41.

The request is successful. The BIG-IP system doesn't act as a full proxy, it simply forwards requests to the internal network.

- 8. Edit the URL to https://10.1.20.32.
- 9. Go to Start > Remote Desktop Connection.
- 10. Click Show Options, then select the Display tab, then change the Display configuration to 1024 by 768.
- 11. Open the General tab and connect to 10.1.20.251 and log in as administrator / password.
- 12. On the Windows Server image go to Start > Log off.

You now have access to all ports and all protocols on the 10.1.20.0 network.

Task 4 – Create a Reject Virtual Server

- 1. In the Configuration Utility, on the Virtual Server List page click Create.
- 2. Use the following information for the new virtual server, and then click **Finished**.

Form field	Value
Name	reject_win_server
Туре	Reject
Destination Address/ Mask	10.1.20.251
Service Port	* All Ports
Protocol	* All Protocols

- 3. On the Lorax Intranet tab click Corporate Tools, and then close the tab.
- 4. Go to Start > Remote Desktop Connection and connect to 10.1.20.251.

Although you still have access to the **10.1.20.0** network, you no longer have access to **10.1.20.251** (the Windows Server).

- 5. Close the Remote Desktop Connection window.
- 6. In the command prompt type the following, and then close the command prompt.

route DELETE 10.1.20.0

7. In the Configuration Utility, select the **forward_virtual** and **reject_win_server** checkboxes and then click **Delete** and **Delete** again.

Task 5 – Use Different Pool Options

 Open the Local Traffic > Pools > Pool List page and click http_pool, and then open the Members page.

Local Traffic » Pools : Pool List » http_pool							
\$ -	Properties	Members		Ø			

Currently the pool is using the default load balancing method: Round Robin.

- 2. From the Load Balancing Method list select Ratio (member), and then click Update.
- 3. Examine the Current Members section.

Currently all three pool members have the same ratio value (1).

- 4. Click node1:80, then change the ratio value to 10, and then click Update.
- 5. At the top of the page click **Members**, then click **node2:80**, then change the ratio value to **5**, and then click **Update**
- 6. Click Members again and examine the Current Members section.
- 7. Use an incognito window to access http://10.1.10.20, then type Ctrl + F5 at least 10 times to reload the page, and the close the page.

8. In the Configuration Utility, at the top of the page click Statistics.

Requests are now being distributed to the three pool members in a 10 - 5 - 1 ratio.

1.2.2 Lab 2: Work with SNAT, Profiles, and Monitors

In this lab you will experiment with using SNAT Auto Map for inbound requests as well as outbound requests from internal users. You'll also use an HTTP and stream profile to make global modifications to text within a web site. Finally you'll see how using health monitors ensures that you the BIG-IP knows which web servers are available for client requests.

Task 1 – Use SNAT AutoMap

- 1. In the Configuration Utility, open the **Pool List** page and click **Create**.
- 2. Use the following information for the new pool, and then click **Finished**.

Form field	Value
Name	lorax_pool
New Members	Address: 10.1.20.41 Service Port: 80 (Click Add)
	Address 10.1.20.42 Service Port: 80 (Click Add)
	Address: 10.1.20.43 Service Port: 80 (Click Add)

- 3. Open the Virtual Server List page and click Create.
- 4. Use the following information for the new virtual server, and then click Finished.

Form field	Value
Name	lorax_virtual
Destination Address/ Mask	10.1.10.25
Service Port	80
Resources > Default Pool	lorax_pool

5. From the desktop open putty, and then connect to BIGIP_A and log in as root / default.

Load, save or delete a stored session	
Saved Sessions	_
Default Settings	_ ⊾Load
BIGIP_A	
	Save

6. At the CLI type (or copy and paste):

tcpdump -i external port 80

- 7. Open a second putty session and connect to BIGIP_A.
- 8. At the CLI type (or copy and paste):

tcpdump -i internal port 80

9. Use a new tab to access http://10.1.10.25, and then close the tab.

The page displays as expected.

10. Examine the tcpdump windows.

On the external VLAN the communication is between the client IP address (10.1.10.199) and the virtual server (10.1.10.25).

On the internal VLAN the communication is between the client IP address (10.1.10.199) and a backend web server (10.1.20.x).

- 11. In both **tcpdump** sessions press the **Enter** key several times to move the log entries to the top of the window.
- 12. In the Ravello window, open the Windows Server console and log in as **f5demo**\administrator / password.
- 13. In the Windows Server image, go to Start > Control Panel, then go to Network and Internet > Network and Sharing Center, and then click Change adapter settings.

- 14. Right-click on Local Area Connection 3 and select Properties.
- 15. Select Internet Protocol Version 4 (TCP/IPv4) and select Properties.

Currently the Windows Server's default gateway is configured for the BIG-IP's internal self IP address (**10.1.20.241**). The network administrator has chosen to modify the default gateway to an external router.

- 16. Edit the Default gateway to 10.1.20.254, then click OK and Close.
- 17. On the Windows desktop, use an incognito window to access http://10.1.10.25.

The page fails to load because the web server is now sending its responses to the external router, not the BIG-IP system.

18. Close the page, and then examine the **tcpdump** window.

On the external VLAN the communication is still between the client IP address (10.1.10.199) and the virtual server (10.1.10.25).

On the internal VLAN the requests are from the client IP address to a back-end web server, however there are no responses from the web server.

- 19. Press the Enter key several times to move the log entries to the top of the window.
- 20. In the Configuration Utility, click lorax_virtual.
- 21. From the Source Address Translation list select Auto Map, and then click Update.

Source Address Translation	None 🔻
	SNAT
Content Rewrite	Auto Map 📐
	None 😽
Douwite Drafile	

22. Use an incognito window to access http://10.1.10.25, and then close the window.

SNAT Auto Map ensures that responses to server request are always sent back to the BIG-IP system.

23. Examine the tcpdump window.

On the external VLAN the communication is still between the client IP address (10.1.10.199) and the virtual server (10.1.10.25).

On the internal VLAN the communication is now between the BIG-IP internal floating self IP address (10.1.20.240) and a back-end web server (10.1.20.x).

Task 2 – Create a SNAT for Internal Resources

- 1. Press the Enter key several times to move the log entries to the top of the window.
- 2. On the Windows server, change the default gateway to **10.1.20.240** (the BIG-IP internal floating self IP address).
- 3. On the Windows server, use Internet Explorer to access **www.f5.com**.

The request fails as the internal resource has no access to the WAN (or the Internet).

4. Close the page, then on the Windows desktop examine the tcpdump windows.

No requests are being sent to the Internet by the BIG-IP system on behalf of the internal resource.

5. In the Configuration Utility, open the Local Traffic > Address Translation > SNAT List page and click Create.

6. Use the following information for the new SNAT, and then click Finished.

Form field	Value
Name	internal_snat
Translation	IP Address: 10.1.10.100
Origin	Address List
Address/Prefix Length	10.1.20.0/24 (Click Add)

7. On the Windows server, use Internet Explorer to access www.f5.com.

The internal user now has public access to the internet using the SNAT IP address of 10.1.10.100.

8. On the Windows desktop, examine the **tcpdump** windows.

On the external VLAN the communication is between the SNAT IP address (**10.1.10.100**) and the Internet resources.

On the internal VLAN the communication is between the internal client (**10.1.20.251**) and the Internet resources.

9. Close the **putty** sessions.

Task 3 – Use Profiles with a Virtual Server

1. Use a new tab to access http://10.1.10.25, and then select the links at the top of the page and examine the text on each page.

The pages make several references to the company name **Lorax Investments**. Lorax Investments has been acquired by **Smithy Financial**. Instead of updating all the web site code we'll use profiles on the BIG-IP system to update the web site.

- 2. Close the tab.
- 3. In the Configuration Utility, open the Local Traffic > Profiles > Other > Stream page and click Create.
- 4. Use the following information for the profile, and then click **Finished**.

Form field	Value
Name	name_change
Source	Lorax Investments
Target	Smithy Financials

- 5. Open the Virtual Server List page and click lorax_virtual.
- 6. From the **Configuration** list select **Advanced**.

- 7. From the HTTP Profile list select http.
- 8. From the Stream Profile list select name_change.

Stream Profile	None 🔻
XML Profile	None / Common
MQTT	name_change stream

- 9. In the Acceleration section, from the HTTP Compression Profile list select httpcompression.
- 10. From the Web Acceleration Profile list select optimized-caching, and then click Update.
- 11. Use an incognito window to access http://10.1.10.25, and then select the links at the top of the page. Although the logo need to be updated, all the text on all pages now references Smithy Financials.

Task 4 – Work with Monitors

1. Edit the URL to http://10.1.10.25/health_check.html

We're going to use this web page to identify if the web server is up or down.

- 2. Close the health check page.
- 3. In the Configuration Utility, open the **Local Traffic > Monitors** page and click **Create**.
- 4. Use the following information for the monitor, and then click Finished.

Form field	Value
Name	lorax_monitor
Туре	http
Interval	4
Timeout	13
Send String	GET /health_check.html\r\n
Receive String	Server_Up
Receive Disable String	Server_Down

- 5. Open the **Pool List** page and click **lorax_pool**.
- 6. Identify the current **Availability** status of the pool.

Unknown identifies when a pool or node doesn't have a configured monitor.

7. Add lorax_monitor to the Active list and click Update.

The Availability of the pool changes to Available (Enabled).

8. Open the Local Traffic > Nodes > Node List page.

Notice that all the nodes currently display unknown.

- 9. Open the Local Traffic > Nodes > Default Monitor page.
- 10. Add gateway_icmp to the Active list and click Update.
- 11. Return to the **Nodes >ode List** page.

All nodes now display. This means that they are all sending **icmp** responses.

- 12. Open the Local Traffic > Network Map page and view the status for lorax_virtual. The virtual server, pool, and all three pool members display available.
- Use your mouse to hover over the pool members.
 All three nodes also display available.

Sub-Task 1 - Take 10.1.20.41:80 Offline

1. On the Windows server go to **Start > Computer**, and then navigate to **C:\inetpub\wwwroot\lorax_public_site_41**.

This is the directory is used for pool member **10.1.20.41:80**. The **health_check.html** web page currently exists on this pool member.

- 2. Delete health_check.html.
- 3. Wait 13 seconds, and then in the Configuration Utility on the Network Map page click Update Map.
 - lorax_virtual
 lorax_pool
 10.1.20.41:80
 10.1.20.42:80
 10.1.20.43:80
- 4. Use your mouse to hover over the pool members.

The first pool member is offline, and all three nodes display available.

Sub-Task 2 – Disable 10.1.20.42:80

- 1. On the Windows server navigate to C:\inetpub\wwwroot\lorax_public_site_42.
- 2. Right-click health_check and select Open with > WordPad.
- 3. In the tag, edit the text to **Server_Down**, and then click **Save**.

This file is used by pool member **10.1.20.42:80**. This pool member will now match the disable string identified in the monitor.

4. Wait 13 seconds, and then in the Configuration Utility on the **Network Map** page click **Update Map**.

The second pool member is now disabled; however, the virtual server and pool still display available.

Sub-Task 3 – Take Node 10.1.20.43 Offline

- 1. On the Windows server, for Local Area Connection 3 open the Internet Protocol Version 4 (TCP/IPv4) properties.
- 2. Click **Advanced**, and in the list of IP addresses scroll down to **10.1.20.43** and click **Remove**, then click **OK** three times and then click **Close**.
- 3. Wait 13 seconds, and then in the Configuration Utility on the Network Map page, click Update Map.
- 4. Use your mouse to hover over the pool members.

The virtual server and pool display disabled but available. Node **10.1.20.43** now displays offline, which causes pool member **10.1.20.43:80** to display offline.

Sub- Task 4 - Bring 10.1.20.42:80 Back Online

- 1. On the Windows server, in the **health_check** WordPad document, edit the text back to **Server_Up**, then click **Save**, and then close WordPad.
- 2. In the Configuration Utility on the Network Map page click Update Map.

Because pool member **10.1.20.42:80** is available, the virtual server and pool once again display available.

3. Use an incognito window to access http://10.1.10.25.

The page displays, with all page elements coming from **10.1.20.42:80**.

4. Close the page.

1.2.3 Lab 3: Use SSL Offload, Best Practices, and iApps

In this lab you will create an HTTPS web application and use the BIG-IP SSL offload feature to free up CPU resources from the web servers. You'll update the BIG-IP configuration by including some best practices. Finally you'll re-create the HTTPS web application by using BIG-IP iApps.

Task 1 – Use SSL Offload

- 1. In the Configuration Utility, open the **Pool List** page and click **Create**.
- 2. Use the following information for the new pool, and then click **Finished**.

Form field	Value
Name	https_pool
Health Monitors	https_443
New Members	Node List: node1 (10.1.20.11) Service Port: 443 (Click Add)
	Node List: node2 (10.1.20.12) Service Port: 443 (Click Add)
	Node List: node3 (10.1.20.13) Service Port: 443 (Click Add)

- 3. Open the Virtual Server List page and click Create.
- 4. Use the following information for the new virtual server, and then click **Finished**.

Form field	Value
Name	https_virtual
Destination Address/ Mask	10.1.10.20
Service Port	443
HTTP Profile	http
Acceleration > HTTP Compression Profile	httpcompression
Resources > Default Pool	https_pool

5. Use a new tab to access https://10.1.10.20.

The page fails to load. At this point the BIG-IP system is simply forwarding SSL requests to the downstream HTTPS web server without decrypting them first. This prevents the BIG-IP system from performing any HTTP functions (such as HTTP compression) which is why the page fails to load.

- 6. In the Configuration Utility, on the Virtual Server List page click https_virtual, and then for SSL Profile (Client) move clientssl to the Selected list.
- 7. For SSL Profile (Server) move serverssl-insecure-compatible to the Selected list, and then click Update.
- 8. Reload the https://10.1.10.20 page.

The page displays as expected.

9. Identify the protocol used in the URL, and the port used on the downstream server (in the **Pool member address/port entry**).

Although the BIG-IP system is now decrypting requests, it is re-encrypting before sending to the HTTPS web servers, which means they must perform the CPU-intensive task of decrypting requests and encrypting responses.

- 10. In the Configuration Utility, on the https_virtual page, for SSL Profile (Server) move serversslinsecure-compatible back to the Available list, and then click Update.
- 11. Open the **Resources** page.

Local Traffic » Virtual Servers : Virtual Server List » https_virtual				
* -	Properties	Resources	Statistics 🗵	

- 12. From the Default Pool list select http_pool, and then click Update.
- 13. Reload the https://10.1.10.20 page.
- 14. Identify the protocol used in the URL, and the port used on the downstream server (in the **Pool member address/port entry**).

The BIP-IP system is now performing SSL offload, sending all downstream requests using port 80. This means that the web servers no longer need to perform the CPU-intensive task of decrypting requests and encrypting responses.

15. Close the tab.

Task 2 – Configure BIG-IP Best Practices

1. Close the Configuration Utility, then open Internet Explorer and access https://10.1.10.240.

Currently the BIG-IP system can be accessed by the outside world using the external self IP address, which is not recommended.

- 2. Log into the BIG-IP system, and then open the Network > Self IPs page and click 10.1.10.240.
- 3. From the Port Lockdown list select Allow None, and then click Update.
- 4. Return to the Self IPs page.

Why are you now unable to access the BIG-IP system?

5. Close Internet Explorer, then open Chrome and access https://10.1.1.245 and then log into the BIG-IP system as admin / admin.

It is not recommended to use the default admin account.

- 6. Open the **System > Users > Authentication** page and click **Change**.
- 7. From the User Directory list select Remote Active Directory.
- 8. Use the following information, and then click **Finished**.

Form field	Value
Host	10.1.20.251
Remote Directory Tree	DC=f5demo,DC=com
Bind DN	CN=Service Account,OU=Corporate,DC=f5demo,DC=com
Bind Password	password
Check Member Attribute	Enabled (selected)
Role	Guest

9. Open the **Remote Role Groups** page and click **Create**.

Syste	m » Users : Remot	e Role Groups		
‡ -	User List	Partition List	Authentication	Remote Role Groups
				\sim

10. Use the following information, and then click Finished.

Form field	Value
Group Name	F5Admins
Line Order	10
Attribute String	memberOf=CN=loraxadmins,CN=Users,DC=f5demo,DC=com
Assigned Role	Administrator
Terminal Access	tmsh

11. Create another role group using the following information, and then click Finished.

Form field	Value
Group Name	F5ResourceAdmins
Line Order	15
Attribute String	memberOf=CN=resadmins,CN=Users,DC=f5demo,DC=com
Assigned Role	Resource Administrator
Terminal Access	Disabled

12. Create another role group using the following information, and then click Finished.

Form field	Value
Group Name	F5Operators
Line Order	20
Attribute String	memberOf=CN=operators,CN=Users,DC=f5demo,DC=com
Assigned Role	Operator
Terminal Access	Disabled

- 13. Open the **System > Users > User List** page.
- 14. Select the admin account and change the password to admin-pass and then click Update.
- 15. Log in as **bigip_operator** / **password**.

16. Notice the user's role at the top of the page.

Hostname:	bigipA.f5demo.com	Date:	Jun 6, 2017	User:	bigip_operator
IP Address:	10.1.1.245	Time:	1:05 PM (PDT)	Role:	Operator

17. Open the Virtual Server List page and examine the Create button.

This user can view all virtual servers and other BIG-IP system objects, but can't create or update objects.

- 18. Log out and then log back in as bigip_ra / password.
- 19. Notice the user's role at the top of the page.
- 20. Open the Virtual Server List page.

This user and see and manage all virtual servers.

- 21. Open the System > Users > Authentication page and examine the Change button.
- 22. Log out and then log back in as **bigip_admin** / **admin**. (NOTE: You are intentionally logging in with the wrong password.)
- 23. Log in as **bigip_admin** / **password**.
- 24. Open the System > Logs > Audit > List page, and then sort the list by the Time column in descending order.

*	Sea	rch	
 Timestamp 	User Name		Event
Mon May 22 12:41:02 PDT 2017		0-0	pid=14966 cmd_data

25. Examine the login and logout details for the three users.

You can see when each user logged in, logged out, and failed to login correctly.

Task 3 – Re-create the Application using iApp

- 1. Open the Virtual Server List page, then select the http_virtual and https_virtual checkboxes, and then click Delete twice.
- 2. Open the **Pool List** page, then select the **http_pool** and **https_pool** checkboxes, and then click **Delete** twice.
- 3. Open the **Node List** page, then select the **node1**, **node2**, and **node3** checkboxes, and then click **Delete** twice.
- 4. Open the iApps > Application Services > Applications page and click Create.
- 5. Create an application using the following information, and then click Finished.

Form field	Value
User Name	https_app
Template	f5.http
Network > Do you want to use the latest TCP profiles?	Yes
SSL Encryption > How should the BIG-IP sys- tem handle SSL traffic?	Terminate SSL from clients, plaintext to servers
Virtual Server and Pools > What IP address do you want to use	10.1.10.20
FQDN	www.f5demo.com
Web servers	10.1.20.11: 80 (Click Add) 10.1.20.12: 80 (Click
	Add) 10.1.20.13: 80
Application Health > What HTTP URI	/index.php
Expected Response	Welcome

6. Open the Virtual Server List page.

iApp created two virtual servers for the web application. The port 80 virtual server is used to redirect requests to the port 443 virtual server.

7. Open the Pool List page.

iApp created a pool with three pool members and a monitor attached (which you can identify by it being identified as available).

8. Open the Monitors page and click https_app_http_monitor.

iApp created the custom HTTP monitor for the web application.

9. Use a new tab to access http://10.1.10.20.

Notice that the request is redirected to **https**. The requests are sent to the web servers on port **80**, identifying that SSL offload is taking place.

10. Close the tab.

1.2.4 Lab 4: Configure High-Availability

In this lab you will set up a high availability pair using two BIG-IP systems. You'll then test failover between the two HA members.

Task 1 – Set up a Device Group

- 1. Open a new tab and click the **BIGIP_B** bookmark and then log into the BIG-IP system.
- 2. Note the status of both BIG-IP systems.

On bigipA.f5demo.com

- 1. Open the **Device Management > Device Trust > Device Trust Members** page and click **Add**.
- 2. In the Device IP Address field, type 10.1.1.246.

- 3. Enter admin for the Administrator Username and Administrator Password.
- 4. Click Retrieve Device Information.
- 5. Click Device Certificate Matches.
- 6. Verify that the Name value is bigipB.f5demo.com and click Add Device.

On bigipB.f5demo.com

- Open the Device Management > Device Trust > Device Trust Members page. This BIG-IP system sees bigipA.f5demo.com as a trusted peer.
- 2. Note the new status of both BIG-IP systems.

On bigipA.f5demo.com

- 1. Open the **Device Management > Device Groups** page and click **Create**. (ENSURE you are on **bigipA.f5demo.com**.)
- 2. Create a device group using the following information, and then click Finished.

Form field	Value
Name	lorax_device_group
Group Type	Sync-Failover
Members	bigipA.f5demo.com bigipB.f5demo.com
Sync Type	Manual with Incremental Sync

- 3. Note the new status of bigipA.f5demo.com.
- 4. Click Awaiting Initial Sync.

This directs you to the **Device Management > Overview** page.

- 5. In the Devices section, leave the bigipA.f5demo.com (Self) option selected.
- 6. For Sync Options leave Push the selected device configuration to the group selected and click Sync.
- 7. Note the status of **bigipA.f5demo.com**.

Both BIG-IP systems are now in sync with each other.

On bigipB.f5demo.com

1. Attempt to log in as admin / admin.

Why do you think your login failed?

- 2. Log in as bigip_admin / password.
- 3. Examine the Virtual Server List and Pool List pages.
- 4. Open the iApps > Application Services > Applications page and click https_app.
- 5. Open the **Reconfigure** page.
- 6. Add a new pool member for **10.1.20.14:80**, and then click **Finished**.
- 7. Note the updated status of bigipB.f5demo.com.

8. Click Changes Pending.

9. In the **Devices** section leave the default options selected and click **Sync**.

On bigipA.f5demo.com

1. Examine the **Pool List** page.

The https_app_pool now contains 4 members.

Task 2 – Test Failover

On bigipA.f5demo.com

- 1. Navigate to Local Traffic > Virtual Servers and right-click on Statistics and open the page in a new tab.
- 2. In the statistics tab reset the statistics for all three virtual servers.

On bigipB.f5demo.com

- 1. Navigate to Local Traffic > Virtual Servers and right-click on Statistics and open the page in a new tab.
- 2. Use a new tab to access http://10.1.10.25.
- Use both statistics tabs (click **Refresh**) to identify which BIG-IP system processed the incoming request.
- 4. In the Configuration Utility tab for **bigipB.f5demo.com**, open the **Device Management > Traffic Groups** page and click **traffic-group-1**.

For this traffic group the Current Device is bigipB.f5demo.com.

- 5. Click Force to Standby twice, and then view the value in the Active Device column.
- 6. In the Lorax Investments page, edit the URL to http://10.1.10.20, then use both statistics tabs to identify which BIG-IP system processed the incoming request.

On bigipA.f5demo.com

- 1. In the Configuration Utility tab, open the **Device Management > Devices** page and click **bigipA.f5demo.com (Self)**.
- 2. Click Force Offline and then OK.

On bigipB.f5demo.com

1. Note the status of **bigipB.f5demo.com**.

On bigipA.f5demo.com

1. On the **Devices** page click **Release Offline** and then **OK**.

On bigipB.f5demo.com

1. Note the status of **bigipB.f5demo.com**.

When **bigipA.f5demo.com** comes back online it doesn't become the active device.

Task 3 – Create an Active / Active Pair

On bigipA.f5demo.com

1. Open the **Device Management > Traffic Groups** page and click **Create**.

2. Create a traffic group using the following information, and then click **Create Traffic Group**.

Form field	Value
Name	traffic-group-2
Failover Method	Preferred Device Order
Preferred Order	bigipA.f5demo.com bigipB.f5demo.com

- 3. Open the Local Traffic > Virtual Servers > Virtual Address List page and click 10.1.10.25.
- 4. From the Traffic Group list select traffic-group-2 (floating), and then click Update.

Troffic Group		nherit traffic group from current partition / path
		traffic-group-1 (floating) 🔹 🔻
Availability	0	None /Common
State	E	traffic-group-1 (floating)
Auto Delete		traffic-group-2 (floating) traffic-group-local-only (nan-floating)

- 5. Click Changes Pending.
- 6. Leave the default options selected and click Sync.
- 7. Note the status of both BIG-IP systems.

You now have an active / active pair.

- 8. Reset both statistics pages.
- 9. Access https://10.1.10.20 and identify which BIG-IP processed the request.
- 10. Access http://10.1.10.25 and identify which BIG-IP is processed the request.

That concludes the hands-on exercises for the Introduction to ADC Deployments with LTM lab session.

Class 2: Building the F5 Fabric

Welcome to the Building the F5 Fabric lab session at F5 Agility 2018. These labs are intended to guide you through creating basic Device Service Cluster (DSC) using the GUI, TMSH and in an automated fashion.

This guide is intended to complement lecture material provided during the Agility event as well as a reference guide that can be referred to after the class.

2.1 DSC Lab Network Setup

In the interest of focusing as much time as possible configuring your application delivery controller, we have provided some resources and basic setup ahead of time. These are:

- Cloud-based lab environment complete with a Windows workstation, three virtual BIG-IPs (VE), and a back-end banking application running on a Linux web server.
- · The virtual BIG-IP has been pre-licensed

If you wish to replicate these labs in your office you will need to perform these steps accordingly.

To access the lab environment, you will require a web browser and Remote Desktop Protocol (RDP) client software. The web browser will be used to access the lab training portal. The RDP client will be used to connect to a Windows workstation, where you will be able to access the BIG-IPs (HTTPS, SSH).

You class instructor will provide additional lab access details.

2.1.1 Login info for lab jump box

Use RDP to connect to the DNS host provided to you in the Agility Portal. The user and password are:

Username: student Password: agility

Bigip1: 10.128.1.245 Bigip2: 10.128.1.246 Bigip3: 10.128.1.247 2

BIG-IP Usernames	BIG-IP Passwords
admin	admin
root	default

Timing for DSC Labs

The time it takes to perform each lab varies and is mostly dependent on accurately completing steps. This can never be accurately predicted but we strived to derive an estimate among several people each having a different level of experience. Below is an estimate of how long it will take for each lab:

LAB Name (Description)	Time Allocated
Lab 1 – Active/Active ScaneN Clustering Exercise	55 minutes
Lab 2 – Sync-Only Groups Exercise	30 minutes
Lab 3 – Device Service Cluster Automation	60 minutes

2.2 Module 1: BIG-IP Device Service Cluster Configuration

In this module you will learn the basics of configuring BIG-IP DSC

2.2.1 Lab 1: Active/Active ScaleN Clustering Exercise

Configuration of active/active device cluster utilizing multiple traffic groups.

Objective:

- Create a two node cluster, with a traffic groups active on both BIG-IPs.
- Create two standard virtual servers. Both virtual servers must be active on a different BIG-IP in the cluster.

Prerequisites and Notes:

To save some time, both VE images have been provided for you. They are licensed, and have basic network connectivity established on the three VLANs listed below.

- 1.1 = External Network Interface (WAN Side)
- 1.2 = Internal network interface (LAN Side)
- 1.3 = High Availability Network Interface *not yet configured

The following is the IP addressing scheme for every student.

- External: 10.128.10.0/24
- Internal: 10.128.20.0/24
- **HA**: 192.168.1.0/24

Lab Requirements:

- Configure Floating Self-Ips
- Create HA VLAN
- Create additional Traffic Group

- Build a Device Service Cluster
- · Create a pool of web servers
- Create three virtual servers
- Test failover

TASK 1 – Configure Floating Self IP's

Create Floating Self IPs

- 1. Open Chrome on the Windows jump box. Connect to bigip1.
 - https://10.128.1.245 (accept certificate error)
 - Username: admin
 - Password: admin
- 2. Go to Network -> Self Ips -> Create
- 3. Create a Floating Self IP for External VLAN using the following values
 - Name/Address: 10.128.10.244
 - Netmask: 255.255.255.0
 - Port Lockdown: Allow None
 - Traffic group: traffic-group-1 (floating)

J. Ma	ain	Help	About	Network » Self IPs							
- <u>-</u>	Statistics			* -	Self IP List						
i a	Apps										Create
()	ONS				Name	Application	IP Address	Netmask	VLAN / Tunnel	Traffic Group	Partition / Path
~~~					10.128.10.245		10.128.10.245	255.255.255.0	external	traffic-group-local-only	Common
	Local Traffic	с			10.128.20.245		10.128.20.245	255.255.255.0	internal	traffic-group-local-only	Common
	Acceleratio	n		Delet	te						
	Device Man	agement									
	Network										
	Interfaces	S	÷								
	Routes		÷								
	Self IPs		÷								

Main Help About	Network » Self IPs » New Self IP						
Mage Statistics							
_	Configuration						
iApps	Name	10.128.10.244					
S DNS	IP Address	10.128.10.244					
Local Traffic	Netmask	255.255.255.0					
-	VLAN / Tunnel	external					
Acceleration							
	Port Lockdown	Allow None 🔻					
Device Management	Traffic Group	Inherit traffic group from current partition / path					
		trainic-group-1 (lioaung)					
Network	Cancel Report Finished						
Interfaces >	Cancel Repeat Finished						
Routes 💮							
Self IPs 💮							

- 4. Click Finished
- 5. Create a Floating Self IP for Internal VLAN using the following values
  - Name/Address: 10.128.20.244
  - Netmask: 255.255.255.0
  - Port Lockdown: None
  - Traffic Group: traffic-group-1 (floating)
- 6. Click Finished

**Note:** Although Self IP's (non-floating) must be created on both F5's in a cluster (which was already completed for you), the creation of Floating Self IP's only needs to occur on a single F5, as they will "float" to the other F5 after HA has been successfully completed.

# TASK 2 – Create HA VLAN

### Create HA VLAN

- 1. Go to Network -> VLANs -> VLAN List -> Create
- 2. Create a VLAN using the following values:
  - Name: ha
  - Interface: 1.3 (untagged)

Seneral Properties					
Name	ha				
Description					
Тад					

# Resources

	Interface: 1.1  Tagging: Untagged Add				
Interfaces	1.3 (untagged)	*			
		•			
	Edit Delete				

# 3. Click Finished

4. Repeat the above steps to create the ha vlan on bigip2

Create one Self IP on **bigip1* and one on bigip2 for HA VLAN*

#### On bigip1:

- 1. Go to Network -> Self IP's -> Create
- 2. Create a Self IP using the following values:
  - Name: 192.168.1.10
  - IP Address: 192.168.1.10
  - Netmask: 255.255.255.0
  - VLAN: ha
  - Port Lockdown: Allow Default
  - Traffic Group: traffic-group-local-only (non-floating)

Name	192.168.1.10
IP Address	192.168.1.10
Netmask	255.255.255.0
VLAN / Tunnel	ha 🔻
Port Lockdown	Allow Default
Fraffic Group	Inherit traffic group from current partition / path

3. Click Finished

# On bigip2:

- 1. Go to Network -> Self IP's -> Create
- 2. Create a Self IP using the following values:
  - Name: 192.168.1.11
  - IP Address: 192.168.1.11
  - Netmask: 255.255.255.0
  - VLAN: ha
  - Port Lockdown: Allow Default
  - Traffic Group: traffic-group-local-only (non-floating)

**Note:** It is critical the Self IP on each big-ip be set to Allow Default for the ha VLAN. This is because failover communication will be configured to use those IP's in an upcoming task.

# TASK 3 – Create Traffic Groups and Additional Floating Self IP's

Create 2 new traffic groups on bigip1

- 1. Go to Device Management -> Traffic Groups -> Create
- 2. Create a new Traffic Group using the following values:
  - Name: lab_traffic_group_01
  - MAC Masquerade: 02:00:00:01:00:00
  - Failover Method = Failover using Preferred Device Order and then Load Aware
- 3. Click Create Traffic Group
- 4. Go to Device Management -> Traffic Groups -> Create

- 5. Create a new Traffic Group using the following values:
  - Name: lab_traffic_group_02
  - MAC Masquerade: 02:00:00:02:00:00
  - Failover Method = Failover using Preferred Device Order and then Load Aware

#### 6. Click Create Traffic Group

Create additional Floating Self IP's for the Internal VLAN for each traffic group Create a Floating Self IP for Internal VLAN in Traffic Group 1

- 1. Go to Network -> Self IP's -> Create
- 2. Create a Floating Self IP using the following values:
  - Name: 10.128.20.243
  - IP Address: 10.128.20.243
  - Netmask: 255.255.255.0
  - VLAN: internal
  - Port Lockdown: Allow None
  - Traffic Group: lab_traffic_group_01 (floating)

Main Help	About	Network » Self IPs » New Self IP				
Mage Statistics		Configuration				
iApps		Name	10.128.20.243			
S DNS		IP Address	10.128.20.243			
Local Traffic		Netmask	255.255.255.0			
		VLAN / Tunnel	internal •			
Accoloration		Port Lockdown	Allow None			
Device Manageme	ent	Traffic Group	Inherit traffic group from current partition / path Lab_traffic_group_01 (floating)			
Network		Cancel Repeat Finished				

Create a Floating Self IP for Internal VLAN in Traffic Group 2

- 1. Go to Network -> Self IP's -> Create
- 2. Create a Floating Self IP using the following values:
  - Name: 10.128.20.242
  - IP Address: 10.128.20.242
  - Netmask: 255.255.255.0
  - VLAN: internal
  - Port Lockdown: Allow None
  - Traffic Group: lab_traffic_group_02 (floating)

Main Help About	Network » Self IPs » New Self IP				
Mage Statistics	Configuration				
iApps	Name	10 100 00 010			
	Name	10.128.20.242			
S DNS	IP Address	10.128.20.242			
Local Traffic	Netmask	255.255.255.0			
Acceleration	VLAN / Tunnel	internal			
Acceleration	Port Lockdown	Allow None			
Device Management	Traffic Group	□ Inherit traffic group from current partition / path Iab traffic group 02 (floating)			
Network	Cancel Repeat Finished				

# TASK 4 – Configure Device Connectivity for HA Communication

#### Configure Local HA Address

- 1. Go to Device Management -> Devices -> select your device (bigip1)
- 2. Choose ConfigSync tab
- 3. Under Local Address
- 4. Choose the HA address and click Update

Configure Network Failover

- 1. From the Failover Network tab, choose Add
- 2. Add both the Management address as well as the HA VLAN address

Important: Perform both of the above steps on bigip2 as well.

### On bigip1, add bigip2 to Peer List

1. Go to Device Management -> Device Trust -> Device Trust Members

Main Help About	Device Management » Device Trust : Device Trust Members					
Mage Statistics	🚓 🚽 Local Domain Identity I	Device Trust Members				
iApps	Peer and Subordinate Devices					Add
Local Traffic	< And		Device Type	Hostname	Serial Number	MAC Address
Acceleration	No records to display. Delete					
Device Management						
Overview						
Devices						
Device Groups (+)						
Device Trust						
Traffic Groups 🔶						

- 2. Click Add
- 3. Add the second F5's Management Address
- 4. Click Retrieve Device Information

Main Help About	Device Management » Device Trust					
Arr Statistics						
_	Retrieve Device Credentials (Step 1 of 3)					
iApps	Device Type	Peer •				
Local Traffic	Device IP Address	10.128.1.246				
Acceleration	Administrator Username	admin				
Administrator Password						
	Marita Davias Castificata (Otar					
Overview Verity Device Certificate (Step 2		2 07 3)				
Dovicos	Subject	/C=/ST=WA/L=Seattle/O=MyCompany/OU=MyOrg/CN=localhost.localdomain/emailAddress=root@localhost.localdomain				
Devices	Management IP Address	10.128.1.246				
Device Groups (*)	Expiration	M Sun Jun 20 18:36:41 PST 2025				
Device Trust >	Serial Number	b0b678af394fe993				
Traffic Groups 📀	Signed	Yes				
	SHA-1	8bc1385384f8a82a507effbf7559572d59dda436				
Network	MD5	4a7351982197bc3bdd9d9876e9d90a9c				
System	Cancel Device Certificate Ma	tches				

- 5. Click Device Certificate Matches
- 6. Click Add Device
- 7. Click on **Device Management -> Devices**. You will now see both F5's.

Ma	ain Help Ab	out	Device Management » Devices					
<u></u> :	Statistics		🔅 🗸 Device List					
i 🐻	Apps		*		Search			
(S) [	DNS		💌 Status	▲ Name		Address	+ Hostname	Version
~~ .				bigip1.lab (Self)		10.128.1.245	bigip1.lab	BIG-IP v11.5.3 (Build 0.0.163)
	Local Traffic		-	bigip2.lab		10.128.1.246	bigip2.lab	BIG-IP v11.5.3 (Build 0.0.163)
	Acceleration							
<b>a</b>	Device Management							
	Overview							
	Devices							
	Device Groups	÷						
	Device Trust	÷						
	Traffic Groups	÷						

Create Device Group

- 1. Go to Device Management -> Device Groups -> Create
- 2. Create a Device Group using the following values:
  - Name: device_group_01
  - Group Type: Sync-Failover
  - Add both devices as Members

Main Help About	Device Management » Device Groups » New Device Group					
Mage Statistics						
_	General Properties					
iApps	Name	device_group_01				
Local Traffic	Group Type	Sync-Failover 🔻				
Acceleration	Description					
Device Management	Configuration: Basic •					
Overview Devices	Members	Includes Available				
Device Gloups						
Device Trust	Sync Type Manual with Incremental Sync 🔻					
Traffic Groups 🕞	Cancel Repeat Finished					
Network						
िंगे System						

# 3. Click Finished

Perform the initial configuration sync

1. Click Awaiting Initial Sync in upper left corner of your screen

1	ONLINE (AC Awaiting Init	TIVE) tial Sync				
Main	Help	About	Devi	ce Management » [	)evice Groups » de	evice_group_01
Statist	ics		⇔ -	Properties	Failover	

- 2. Select bigip1.lab (Self)
- $3. \ Choose \ {\tt Push}$  the selected device configuration to the group

Main Help About	Device Management » Overview
Mage Statistics	A Verview
iApps	Device Groups:
Local Traffic	Sync Issues :
Acceleration	✓ device_group_01
Device Management Overview Devices	Awaiting Initial Sync The device group is awaiting the initial config sync Recommended action: Synchronize one of the devices to the group
Device Groups (*)	Devices: View: Basic V
Device Trust >>	New Device Group Members
Traffic Groups 🔶	Figip 1.1ab (Self)     Awaiting Initial Sync     Configuration Time : Device has not synced with group
Network	Figip2.lab     Awaiting Initial Sync     Configuration Time : Device has not synced with group
<u>हिं भे</u> System	Sync Options:      Push the selected device configuration to the group     Pull the most recent configuration to the selected device     Sync
	In Sync :
	device_trust_group     On Sync     2 Devices     Sync-Only Group     Auto Sync     In sync on 6/21/2017 at 14:38:55

4. Click Sync. You will notice the change in the upper left status to "In Sync"

### **TASK 5 – Create Web Server Pool and Virtual Servers**

#### Create a web server pool

- 1. Go to Local Traffic -> Pools -> Create
- 2. Create a Pool using the following values:
  - Name: lamp_pool
  - Health Monitor: http
  - Add first Node: Node Name: 10.128.20.11 Address: 10.128.20.11 Port: 80
  - Add second Node: Node Name: 10.128.20.12 Address: 10.128.20.12 Port 80
  - Add third Node: Node Name: 10.128.20.13 Address: 10.128.20.13 Port 80

iApps	Name	lamp_pool
S DNS	Description	
Local Traffic		Active Available //Common A
Network Map	Health Monitors	http gateway_icmp http_head_f5
Virtual Servers	•	>> https https 443
Policies	▶	
Profiles	Resources	
iRules	Load Balancing Method	Round Robin
Pools	Priority Group Activation	Disabled
Nodes	•	New Node O Node List
Monitors (+		Node Name: 10.128.20.252 (Optional)
Traffic Class (+		Address: 10.128.20.252
Address Translation	New Members	Add
Acceleration		R:1 P:0 C:0 10.128.20.252 10.128.20.252 :80 *
Device Management		
Network	Cancel Repeat Finished	Edit Delete

3. Click Finished.

Create first Virtual Server

- 1. Go to Local Traffic -> Virtual Servers -> Create
- 2. Create a Virtual Server using the following values:
  - Name: http_vs_01
  - Destination (Host): 10.128.10.230
  - Port 80
  - Default Pool: lamp_pool
  - Source Address Translation (SNAT): Auto Map
- 3. Click Finished

### Create second Virtual Server

- 1. Go to Local Traffic -> Virtual Servers -> Create
- 2. Create a Virtual Server using the following values:

- Name: http_vs_02
- Destination (Host): 10.128.10.231
- Port 80
- Default Pool: lamp_pool
- Source Address Translation (SNAT): Auto Map
- 3. Click Finished
- 4. You should now have two virtual servers created

S DNS				Status	▲ Name	Application	Destination	Service Port	Type	Resources	Partition / Path
~ ~	Local Traffic			0	http_vs_01		10.128.10.230	80 (HTTP)	Standard	Edit	Common
light L				0	http_vs_02		10.128.10.231	80 (HTTP)	Standard	Edit	Common
	Network Map	Ena	able	Disab	le Delete						

5. Sync your configuration.

# TASK 6 – Configure Virtual Servers for Different Traffic Groups and Simulate Failover

Reconfigure the new Virtual Servers so that they reside in the 2 new traffic groups.

- 1. Go to Local Traffic -> Virtual Servers -> Virtual Address List
- 2. Click on 10.128.10.230
- 3. Change the Traffic Group to lab_traffic_group_01.

Ma	ain Help About	Local Traffic » Virtual Servers : Virtual Address List » 10.128.10.230						
<u></u>	Statistics	🔅 👻 Properties	Statistics I					
i 🔊	Apps	General Properties						
<b>(</b> )	DNS	Name	10.128.10.230					
~~		Partition / Path	Common					
	Local <mark>Traffic</mark>	Address	10.128.10.230					
	Network Map	Traffic Group	Inherit traffic group from current partition / path Lab_traffic_group_01 (floating)					
	Virtual Servers							
	Policies	Availability						
	Profiles	State	Enabled •					
	iRules	Auto Delete						
	Deale		N					

#### 4. Click Update

- 5. Perform the same procedure for 10.128.10.231, but place in lab_traffic_group_02.
- 6. Sync Configuration

Check which objects are in each Traffic Group

- 1. Go to Device Management -> Traffic Groups
- 2. Select a group, and choose Failover Objects.

Simulate a failover within the Active/Active cluster

1. Go to Device Management -> Traffic Groups
2. Take note of which devices are currently servicing each Traffic Group. If 1 device is servicing a particular traffic group, and the other device is servicing another traffic group, you will see that both **bigip1** and **bigip2** list their status as ACTIVE in the GUI

Main Help About	Device Management » Traffic (	Groups						
Statistics	🔅 🚽 Traffic Group List							
iApps	Failover Status							
Local Traffic	Status	ACTIVE						
	Summary	2/3 active						
Acceleration	Details							
Device Management	*	Search						Create
Overview	✓ ▲ Name		Active Device	Part Active Device	Failover Objects	+ HA Group	+ Failover Method	Partition / Path
Devices	lab_traffic_group_01		bigip1.lab (Self)	bigip2.lab	1	None	HA Order	Common
Device Groups	lab_traffic_group_02		bigip1.lab (Self)	bigip2.lab	1	None	HA Order	Common
Device Trust	traffic-group-1		bigip2.lab	bigip1.lab (Self)	2	None	HA Order	Common
Traffic Groups	Force to Standby Delete							
Network								
System								

3. From bigip1, choose any Traffic Group which is currently active on it.

Statistics	🚓 🚽 Properties Fa	ailover Objects						
- Challoudo								
ji Apps	General Properties							
	Name	lab_traffic_group_01						
	Partition / Path Common							
Acceleration	Description							
Device Management	MAC Masquerade Address	02:00:01:100:00						
Overview	Current Device	bigip1.lab (Self)						
Devices	Next Active Device	bigip2.lab						
Device Groups 📀	Health Monitor							
Device Trust >	HA Group							
Traffic Groups 💮								
_	Failover Configuration							
Network	Failover Method	Method 💿 Failover to Device With Best HA Score						
E Sustam		Failover using Preferred Device Order and then Load Aware						
* System		Always Failback to First Device if it is Available						
	Failover Order	Preferred Order Load Aware bigip1.lab bigip2.lab						
		Up Down						

4. Select Force to Standby to manually fail this traffic group over to bigip2

**Note:** This is failing over the traffic group only, not the device. When all traffic groups have been failed-over to bigip2, bigip1 will be STANDBY, and bigip2 will be ACTIVE.

Why does bigip1 display as STANDBY when we never failed it over at the device level? Are all VIP's still accessible?

#### What are some practical, real-world examples for what we just configured?

# 2.2.2 Lab 2: Sync Only exercise

**Objective:** Add a sync only device group. You have already configured two VE's in an Active/Active Configuration with two traffic groups. Add a 3rd VE. Create new Sync-Only group, and new Partition that will leverage new Sync-Only group. Create new SSL profile which will sync to all devices.

#### **Prerequisites and Notes**

Have at least 2 VE's in an Active/Active Failover Configuration.

Note that for this exercise we will use three network interfaces (as in in the previous failover exercise)

- 1.1 = External Network Interface (Wan Side)
- 1.2 = Internal network interface (LAN Side)
- 1.3 = High Availability Network Interface

#### TASK 1 – Add HA Self IP to bigip3.lab

#### 1. Go to Network -> Self lps -> Create

- Name: 192.168.1.12
- IP Address: 192.168.1.12
- Netmask: 255.255.255.0

Network » Self IPs » New Self IP.

- VLAN: HA
- Port Lockdown: Allow Default
- 2. Click Finished

Name	192.168.1.12
IP Address	192.168.1.12
Netmask	255.255.255.0
VLAN / Tunnel	HA
Port Lockdown	Allow Default
Traffic Group	Inherit traffic group from current partition / path traffic-group-local-only (non-floating)

## TASK 2 – Update Config-Sync Properties on bigip3.lab

1. Go to Device Management -> Devices

- 2. Click on then bigip3.lab (Self) link
- 3. Go to ConfigSync tab
- 4. Select 192.168.1.12 (HA) in Local Address dropdown
- 5. Click Update

Devic	e Management » [	Devices » bigip3.la	b							
⇔ -	Properties	ConfigSync	Failover Network	Mirroring						
Config	Sync Configuration									
Local	Address	192.168.1.1	12 (HA) 🔻							
Updat	te									

# TASK 3 – Add bigip3 to peer list on bigip1

1. Go to Device Management -> Device Trust -> Device Trust Members -> Add

Device Management » Device Trust									
Retrieve Device Credentials (St	tep 1 of 3)								
Device Type	Peer •								
Device IP Address	10.128.1.247								
Administrator Username	admin								
Administrator Password	•••••								
Cancel Retrieve Device Infor	mation								

- 2. Click on Retrieve Device Information
- 3. Click Device Certificate Matches
- 4. Click Add Device

Device Management » Device T
------------------------------

Device Type	Peer
Device IP Address	10.128.1.247
Administrator Username	admin
Administrator Password	
/erify Device Certificate (Ste	2p 2 of 3)
Subject	/C=/ST=WA/L=Seattle/O=MyCompany/OU=MyOrg/CN=localhost.localdomain/emailAddress=root@localhost.localdomain
Management IP Address	10.128.1.247
Expiration	🏴 Sun Jun 20 18:36:41 PST 2025
Serial Number	b0b678af394fe993
Signed	Yes
SHA-1	8bc1385384f8a82a507effbf7559572d59dda436
MD5	4a7351982197bc3bdd9d9876e9d90a9c
Add Device (Step 3 of 3)	
Name	bigip3.lab

5. Go to bigip3 and verify bigip1 and bigip2 are now in the peer list

De	evic	e Management » [	Device Trust : Devic	e Trust Members				
*		Local Domain		Device Trust Members				
	_			,				
Pee	er ai	nd Subordinate Dev	ices					Add
	] \$	Name			Device Type	≑ Hostname	Serial Number	MAC Address
	b	gip1.lab			Peer	bigip1.lab	42378932-5196-5a7d-303c685f5fb2	00:50:56:b7:d7:65
	b	gip2.lab			Peer	bigip2.lab	42378932-5196-5a7d-303c685f5fb2	00:50:56:b7:d7:65
De	elete	•						

# TASK 4 – Create New Sync Only Group

## On bigip1:

# Create a sync only group

- 1. Go to Device Management -> Device Groups -> Create
  - Name = device_group_02_so
  - Group Type = Sync-Only
  - Members = All 3 bigip's

Device Management » Device	Groups » New Device Group						
General Properties							
Name	device_group_02_so						
Group Type	Puna Only						
Gloup Type	Sync-Omy V						
Description							
Configuration: Basic V							
	Includes Available						
	/Common 🔺 🔤						
Members	bigip1.lab <<						
	bigip2.lab						
	Ugipolau v						
Sync Type	Manual with Incremental Sync 🔻						
Cancel Repeat Finished							

# 2. Click Finished

# Perform initial sync

- 1. Click Awaiting Initial Sync in the upper-left of the GUI
- 2. Choose device_group_02_so, then choose bigip1.
- 3. Select **Push** the selected device configuration to the group and then click **Sync**

Device Management » Overview											
🚓 👻 Overview											
Device Groups:											
Sync Issues :	Sync Issues :										
✓ device_group_02_so	Awaiting Initial Sync	3 Devices	Sync-Only Group	Manual Sync	No successful group sync						
Awaiting Initial Sync											
The device group is a	waiting the initial config sync										
Recommended action	n: Synchronize one of the devic	es to the group									
Devices:					View: Basic 🔻						
New Device Group Members	8										
bigip1.lab (Self)		🔵 Awaiting Initi	al Sync	Configuration Time : Device has not synced with group							
🔘 🛜 bigip2.lab		🔵 Awaiting Initi	al Sync	Configuration Time : Device has not synced with group							
💿 🧒 bigip3.lab		🔵 Awaiting Initi	al Sync	Configuration Time : Device has not synced with group							
Sync Options:											
Push the selected device con	nfiguration to the group										
Puil the most recent configur	ation to the selected device										
Sync											
In Sync :											
device_trust_group	🔵 In Sync	3 Devices	Sync-Only Group	Auto Sync	In sync on 6/21/2017 at 14:55:07						
▶ device_group_01	O In Sync	2 Devices	Sync-Failover Group	Manual Sync	In sync on 6/21/2017 at 14:41:52						

## TASK 5 – Create New Partition and SSL Profile, Configure for Sync-Only

#### On bigip1:

Create new Partition

- 1. Go to System -> Users -> Partition List -> Create
  - Partition Name = partition_02_so
  - Device Group = (uncheck "Inherit device group from root folder" box), device_group_02_so
  - Traffic Group = None

System ... Users : Dartition List

Partition Name	partition_02_so
Partition Default Route Domain	0 •
Description	Extend Text Area Wrap Text
Redundant Device Configuration	
Device Group	□ Inherit device group from root folder device_group_02_so (Sync-Only) ▼
Traffic Group	None 🔻

## 2. Click Finished

Create new Client SSL Profile

- 1. Go to Local Traffic -> Profiles -> SSL -> Client
- 2. Change Partition to partition_02_so in the upper-right of the GUI

Hostname: bigip1.leb Date: Jul 15, 2015 User: admin IP Address: 10.128.1.245 Time: 4.43 PM (PDT) Role: Administrator Partition: par									on: partition_02_so	•						
ſ	ONLINE (ACT	TVE) Iding														
M	ain Help	About	Local	Traffic » Pro	files : SS	L:Client										
-	Statistics		* -	Services				Persistence	Protocol		SSL	~	Authenti	cation 🔫	Other	•
	iApps		*	-			Search									
3	DNS			Name										Application	on 🔅 Parent Profile	e e Pa
~~~				lientssl											(none)	Con
001	Local Traffic		(i) c	clientssl-insecure-compatible								clientssl	Con			
	Network Map		i v	rom-default-clie	entssl										clientssl	Con
	Virtual Servers	÷	Delet	e												
	Policies	÷														
	Profiles	>														

3. Click Create

- Name = clientssl_02_lab
- · Accept all defaults
- 4. Click Finished

Sync Changes

- 1. On bigip2 and bigip3, confirm this Sync-Only clientssl profile has synced
- 2. Go to Local Traffic -> Profiles -> SSL -> Client
- 3. Choose partition_02_so
- 4. Is clientssl_02_lab there?

What are some practical uses for Sync-Only device groups?

2.2.3 Lab 3: Device Service Cluster Automation

We'll be using POSTMAN and it is built upon Chrome libraries, therefore, you must use Chrome to visit every BIG-IP login page (i.e. http://10.128.1.245/) and bypass the security warning - otherwise the REST calls will fail. If you fail to bypass these security warnings because of the untrusted SSL certificate on the BIG-IP management interface you will receive an error when attempting to send REST calls.

Pre-lab work

To start this lab, we'll want to start with a blank state again - erasing all that hard work you've done. In order to do so, go to "SYSTEM -> Archives" and then click on the UCS archive shown. Once it is up, click to restore and start the process on both BIG-IP's in order to go back to the default Lab configuration.

Objective: At a high level, we'll be building a simple active/standby device service cluster (DSC). With some new DevOps oriented packages created by F5, the heavy lifting will be taken away, and we have some simple REST API calls to make to accomplish the DSC creation. The high levelsteps to do this are as follows:

- 1. Authenticate. We'll show basic and token based authentication but we'll then use token authentication throughout the rest of the exercises.
- 2. Installation of the DevOps packages. We'll SCP the packages to the BIG-IP's, then via API, install them and verify they are installed.

- 3. Execute the device settings package in order to set the hostname, device name, NTP server and NTP timezone.
- 4. Execute the DSC configuration package in order to create an active/standby DSC.

Hint: Note that when working with API's, generally once you create an object it is done via a POST. If you try to modify an object by using the POST method again, you will create another instance of what you've done, or receive an error citing an object with that name already exists. The "Blocks" that you submit via POST will be duplicated if you use the POST method as they will each receive a unique ID upon creation.

Modification is done via the PATCH HTTP method calling out the same name/ID. There are a few "Optional" tasks created within POSTMAN which you can experiment Unbinding and deleting application blocks.

TASK 1 – Authentication

One of the many basic concepts related to interaction with REST API's is how a particular consumer is authenticated to the system. BIG-IP and iWorkflow support two types of authentication: HTTP BASIC and Token based. It's important to understand both of these authentication mechanisms, as consumers of the API will often make use of both types depending on the use case. This lab will demonstrate how to interact with both types of authentication.

1. Open Postman from the Desktop and make sure the Environment is set to Lab3_DevOps_Automation

	Builder Team Library	.	SYNC OFF	Sign In		J.	•
Ī	Step 1: HTTP BASIC AL × +		Lab3_DevOps_Au	Itomation	× ¥	©	⇔
	Step 1: HTTP BASIC Authentication	1	No Environment	t		ples (0)	•
1		1	.ab3_DevOps_Automa	ation			
1			D	Cond	~	C	~

TASK 2 – HTTP BASIC Authentication

In this task we will use the Postman tool to send API requests using HTTP BASIC authentication. As its name implies this method of authentication encodes the user credentials via the existing BA-SIC authentication method provided by the HTTP protocol. The mechanism this method uses is to insert an HTTP header named Authorization with a value that is built by Base 64 encoding the string <username>:string <username>:string header takes this form:

Authorization: Basic YWRtaW46YWRtaW4=

It should be noted that cracking the method of authentication is TRIVIAL; as a result API calls should always be performed using HTTPS (F5 default) rather than HTTP.

Perform the following steps to complete this task:

1. Open the Postman application from the link on the Desktop. Click the 'Collections' tab on the left side of the screen, expand the Lab3_DevOps_Automation collection on the left side of the screen, expand the Lab 3 Task 2/3 - API Authentication & 'example' folder:

Q	Filter						
		History	Collections				
All N	/le Tea	im		C‡	↓ . . ~		
Lab3_DevOps_Automation 32 requests							
Lab 3 Task 2/3 - API Authentication & 'example'							
	GET	Step 1: HTTP BASIC Authentic	ation				
	POST	Step 2: Get Authentication To	ken BIG-IP 1				
	GET	Setp 3: Verify Authentication	Works BIG-IP 1				
	PATCH	Step 4: Set Authentication To	ken Timeout BIG-IP 1				
	POST	Step 5: Get Authentication To	oken BIG-IP 2				
	GET	Setp 6: Verify Authentication	Works BIG-IP 2				
	PATCH	Step 7: Set Authentication To	ken Timeout BIG-IP 2				

2. Click the Step 1: HTTP BASIC Authentication item. Click the 'Authorization' tab and select Basic Auth as the Type. Fill in the username and password (admin/admin) and click the 'Update Request' button. Notice that the number of Headers in the Headers tab changed from 1 to 2. This is because Postman automatically created the HTTP header and updated your request to include it. Click the 'Headers' tab and examine the HTTP header:

Step 1: HTTP BASIC	At • +	INTRO - Automation & Orches \vee 💿 🔅						
▶ Step 1: HTTP B	ASIC Authentication							
GET 🗸	GET V https://{{bigip_a_mgmt}}/mgmt/tm/ltm Params Send							
Authorization •	Headers (2) Body Pre-request Script Tests	Cookies Code						
Туре	Basic Auth	Clear Update Request						
Username	admin The adde	authorization header will be generated and ed as a custom header						
Password		Save helper data to request						
	Show Password							

- 3. Click the 'Send' button to send the request. If the request succeeds you should be presented with a listing of the /mgmt/tm/ltm Organizing Collection.
- 4. Update the credentials and specify an INCORRECT password. Send the request again and examine the response:

В	ody	Cookies	Headers ((15) T	Tests		_		Status: 401	. F5 Autho	orizatio	n Requir	red	Time: 212
	Pretty	Raw	Preview	HTML	\sim	₽					Q		5	ave Resp
×	1 < 2 <	<pre>?xml vers !DOCTYPE</pre>	ion= "1.0" e html PUBLIC	ncoding=" "-//W3C/	'ISO-88 //DTD X	859-1"?> (HTML 1.0 Strict//EN)								

TASK 3 – Token Based Authentication

One of the disadvantages of BASIC Authentication is that credentials are sent with each and every request. This can result in a much greater attack surface being exposed unnecessarily. As a result Token Based Authentication (TBA) is preferred in many cases. This method only sends the credentials once, on the first request. The system then responds with a unique token for that session and the consumer then uses that token for all subsequent requests. Both BIG-IP and iWorkflow support token-based authentication that drops down to the underlying authentication subsystems available in TMOS. As a result the system can be configured to support external authentication providers (RADIUS, TACACS, AD, etc) and those authentication methods can flow through to the REST API. In this task we will demonstrate TBA using the local authentication database, however, authentication to external providers is fully supported.

Hint: For more information about external authentication providers see the section titled **About external authentication providers with iControl REST** in the iControl REST API User Guide available at https://devcentral.f5.com

Perform the following steps to complete this task:

- 1. Click the 'Step 2: Get Authentication Token' item in the Lab 3.1 Postman Collection
- 2. Notice that we send a POST request to the /mgmt/shared/auth/login endpoint.

	POST https://{{big_ip_a_mgmt}}/mgmt/shared/authn/login							
Auth	orization	Headers (1)	Body 🔵	Pre-request Script	Tests			
	Key					Value		
~	Content-Typ	e				application/json		
	New key					value		

3. Click the 'Body' tab and examine the JSON that we will send to BIG-IP to provide credentials and the authentication provider:

	Step 2: Get Authentication Token								
POST 🗸			\sim	https:// <mark>{{big</mark>	_ip_a_mgmt}	}/mgmt/sh	ared/authn/l	ogin	
	Author	rizati	ion	Headers (1)	Body 🕒	. e-req	uest Script	Tests	
) for	rm-d	ata	x-www-form-	urlencoded	🖲 raw	binary	JSON (application/json)	\sim
	1 -	{							
	2 3 4 5	}	"us "po "lo	sername":"", assword":"", oginProviderNan	ne":"tmos"	-			

- 4. Modify the JSON body and add the required credentials (admin/admin). Then click the 'Send' button.
- 5. Examine the response status code. If authentication succeeded and a token was generated the response will have a 200 OK status code. If the status code is 401 then check your credentials:

Body	Cookies	Headers (22) Tests	Stat	us: 200 (OK Time
Pretty	r Raw	Preview	JSON 🗸		Q	Save Res
1 - 2	{ "usernam	e": "admin"	,			
Unsuco	essful:					

Body Cookies Heade	ers (15) Tests	Status: 401 F5 Authorization Required	Time: 2
Pretty Raw Preview	v HTML V	ΓQ	Save Res
<pre> 1 <?xml version="1.0 2 <!DOCTYPE html PUB</pre></pre>	" encoding="ISO-8859-1"?> LIC "-//W3C//DTD XHTML 1.0 Strict//EN"		

6. Once you receive a 200 OK status code examine the response body. The various attributes show the parameters assigned to the particular token. Find the 'token' attribute and copy it into your clipboard (Ctrl+c) for use in the next step:

Body	Cookies Headers (22) Tests									
Pretty	Raw Preview JSON V									
1 • 2 3 • 4 5 6 7 •	<pre>{ "username": "admin", "loginReference": { "link": "https://localhost/mgmt/cm/system/authn/providers/tmcc/if44a60e-11a7-3c51-a49 }, "loginProviderName": "tmos", "token": { "token": { "token": {totken": {totken": {totken": {totken": {totken": {totken": {totken: {totken:</pre>									
9 10 11	<pre>8 "token": "QJXK6HQWZFW35VC3JRZOXWNNDQ", 9 "name": "QJXK6HQWZFW35VC3JRZOXWNNDQ", 0 "userName": "admin", 1 "sethDrawidenName": "tracs"</pre>									
12 • 13	<pre>"user": { "link": "https://localhost/mgmt/cm/system/authn/providers/tmos/1f44a60e-11a7-3c51-a -b032-0b2f4a2523a1"</pre>									
14	},									

7. Click the 'Step 3: Verify Authentication Works' item in the Lab 3.1 Postman collection. Click the 'Headers' tab and paste the token value copied above as the VALUE for the X-F5-Auth-Token header. This header is required to be sent on all requests when using token based authentication.

▶ Set	tp 3: Verify /	Authentication	Works				
	GET 🗸	https:// <mark>{{bi</mark>	gip_a_mgmt	;}}/mgmt/tm/ltm			Params
Auth	orization	Headers (1)	lody	Pre-request Script	Tests		
	Key					Value	
≡ 🖍	X-F5-Auth-1	Token			\rightarrow	QJXK6HQWZFW3	35VC3JRZOXWNND
	New key					value	

- 8. Click the 'Send' button. If your request is successful you should see a '200 OK' status and a listing of the ltmOrganizing Collection.
- 9. We will now update your Postman environment to use this auth token for the remainder of the lab. Click the Environment menu in the top right of the Postman window and click 'Manage Environments':

×,	🗿 ѕулсо	FF Si	ign In	٨	•	۲
	INTRO - A	utomatior	n & Orch	\sim	©	Ф
	ironm	ents				
/	· ·		Shar	ed Envi	ronme	nts
	Params	Send	~	Sav	e v	

- 10. Click the Lab3_DevOps_Automation item
- 11. Update the value for bigip_a_auth_token by Pasting (Ctrl-v) in your auth token:

MANAGE ENVIRONM	ENTS		×
Manage Environment	s Environment Templates		
Edit Environment			
INTRO - Automatio	n & Orchestration Lab		
Key		Value	Bulk Edit
✓ bigip_a_mg	nt	10.1.1.4	
✓ bigip_b_mg	mt	10.1.1.5	
viwf_mgmt		10.1.1.6	
∃ ✓ bigip_a_aut	n_token	QJXK6HQWZFW35VC3JRZOXWNN	1DQ ×
✓ bigip_b_aut	h_token		

- 12. Click the 'Update' button and then close the 'Manage Environments' window. You're subsequent requests will now automatically include the token.
- 13. Click the 'Step 4: Set Authentication Token Timeout' item in the Lab 3.1 Postman collection. This request will PATCH your token Resource (check the URI) and update the timeout attribute so we can complete the lab easily. Examine the request type and JSON Body and then click the 'Send' button. Verify that the timeout has been changed to 36000 in the response:

14. Repeat the same steps for setting the authentication token for BIG-IP 2 into the environment variable bigip_b_auth_token, ensuring the set the timeout as well.

TASK 4 – Install iApp RPM Packages

In this Task you'll be installing two DevOps packages developed by F5 built for the express purpose of quickly and easily taking a new set of BIG-IP's and bringing them online programmatically. You will install the packages on the two BIG-IP's using SCP, and then interact with the BIG-IP API.

 Use WinSCP to SCP from ~\Documents\LabFiles*.rpm to /var/config/rest/downloads on BIG-IP 1 and BIG-IP 2.

The user is root and the password is default. WinSCP has been preconfigured for both BIG-IP's. You can exclude the DSC RPM on BIG-IP 2 if you desire, as we won't install it there.

2. Expand the Lab 3 Task 4 'Install RPM Packages' collection in Postman and click Step 2: "Install device settings RPM package on BIGIP1".

Click the Body tab and note the command.

Click Send

You should receive a 200 OK response

3. Expand the Lab 3 Task 4 'Install RPM Packages' collection in Postman and click Step 3: "Install DSC RPM package on BIGIP1."

Click the Body tab and note the command.

Click Send

You should receive a 202 Accepted response

4. Expand the Lab 3 Task 4 'Install RPM Packages' collection in Postman and click Step 4: "Install device settings RPM package on BIGIP 2".

Click the Body tab and note the command.

Click Send

You should receive a 202 Accepted response

5. Run Step 5 "Get Block Template IDs on BIG-IP 1." The output of this command will return two JSON templates, one for each package that was installed. At the top of the JSON payload is

the field id. Capture the unique ID for the id key and put it into the Environment Variables bigip_a_settings_id and bigip_a_dsc_id. Ensure that these ID's are mapped from the correct template to the correct environment variable or later calls will fail. If you get zero, or just one TEMPLATE result back, there are "OPTIONAL" calls as part of Task 4.

6. Run Step 6 "Get Block Template IDs on BIG-IP 2." Just like the previous step, take the "id" output for the device-settings TEMPLATE and put it into the environment variable <code>bigip_b_settings_id</code>. The DSC package was not installed on BIG-IP 2 so you will only see one block template.

Error: Running the "OPTIONAL" REST calls if you ran into trouble. There are three calls, one for each of the packages that get installed in the event you need to delete a "block". In order to run them, we require the task ID from the installation REST Call. The graphic below shows that ID. Take that ID and then move to the requisite task and put the ID at the end of the URI replacing {guid} and run the call. The resulting output will tell you what has happened. Most likely, the package isn't in the right directory and cannot be installed. If that's the case, move the file in place and run the install REST call again.

The response contains the updated status of the package management task. The JSON in the response contains the status property. When the value of status updates to "FINISHED", the package installation is complete. You can then find the added package at /var/config/rest/iapps/ f5-rest-bigip-settings on the command line.

```
1 • {
         "packageFilePath": "/var/config/rest/downloads/f5-rest-bigip-settings-2.0.0-0.0.75.noarch.rpm",
 2
 3
         "packageName": "f5-rest-bigip-settings-2.0.0-0.0.75.noarch",
         "operation": "INSTALL",
 4
         "step": "POST INSTALLED PACKAGE",
 5
 6 -
         "packageManifest": {
             "tags": [
 7 -
                 "TAPP
 8
 9
             ]
10
         id": "9ca1e72f-9768-4449-89ca-2a0499f01ab2",
11
         "status": "FINISHED",
12
```

TASK 5 – Configure Device Settings

This taks modifies base device settings. The DSC package requires NTP, DNS, and hostname to be set before it will work, so that is what this exercise is doing. This package can also license/re-license a device, or default the configuration in one REST call. Because of the lab setup, we will not be doing the licensing portion in the lab.

Expand the Lab 3 Task 5 'Device Settings – NTP/DNS/License' collection.

1. This step lists the specific "block" identified by {{bigip_a_settings_id}}, meaning the installed iApp packages and their associated properties. If you were to remove the / {{bigip_a_settings_id}} from the URI, you could see all configured blocks, Those with TEMPLATE as the status, as well as any in BINDING, BOUND or ERROR state.

To formulate your own call, you'd take the output of the TEMPLATE block and create your own "block" in order to change settings. We've already done that in Step 2, and the environment variables are being used to identify the parent TEMPLATE/package.

Body Cookies Headers (22) Tests	Status: 200 O	K Time: 119 ms
Pretty Raw Preview JSON V	ΓQ	Save Response
<pre>1 * { 2 * "items": [3 * {</pre>		

2. We've formulated a valid call to BIG-IP 1 here, and we've modified settings like hostname, timezone, NTP and DNS (server) and search domain. Feel free to change some of these settings if you'd like, but make the changes simple as syntax is vitally important to the success of the call. We're using IP addresses that will have no meaning in a real configuration (IP address of 127.27.1.1), but are required to be set for the DSC RPM.

One item to note is the selfLink variable at the bottom of the call body. The correct ID needs to be identified and we do that by utilizing the {{bigip_a_settings_id}}. property.

The response for this call will give you a ID as the top line of the response. Capture that ID and move to Step 3.

Body	Cookies Headers (23) Tests	Status: 202 Accepter	d Time: 169 ms
Pretty	Raw Preview JSON V	ΓQ	Save Response
1 • 2 3 4 • 5 • 6 7 8 • 9	<pre>{ "id": "50d7bd4f-0574-461c-9d4e-d9d0e312dc0a", "name": "Lab_3.3_Settings", "inputProperties": [{ "id": "deviceReference", "type": "REFERENCE", "value": { "value": { "link": "localhost"</pre>		

3. In step 3 you will need to paste the ID captured in step 2 in place of the {guid} at the end of the URI.

Step 3: Verify Device Details status BIG-IP 1

GET 🗸	https://{{big	https://{{ <mark>bigip_a_mgmt}</mark> }/mgmt/shared/iapp/blocks/ <mark>60d7bd4f-0574-461c-9d4e-d9d0e312dc0a</mark>					~
Authorization	Headers (2)		Pre-request Script	Tests			

Exa

We are interested to see the state "BOUND" which is found near the end of the response. If the state still shows "BINDING," continue to re-run this call until you see BOUND or an error. The errors should be self explanatory, but if you have trouble, see one of the proctors.

```
"configProcessorTimeoutSeconds": 500,
"statsProcessorTimeoutSeconds": 15,
"state": "BOUND",
"generation": 2,
"lastUpdateMicros": 1500395025391411,
"kind": "shared:iapp:blocks:blockstate",
"selfLink": "https://localhost/mgmt/shared/iapp/blocks/60d7bd4f-0574-461c-9d4e-d9d0e312dc0a"
```

Steps 4,5,6 - Repeat steps 1, 2, and 3 for bigip2, but use the POSTMAN steps 4, 5, and 6 that have been pre-set for BIG-IP 2.

Close all open tabs (Don't Save if prompted) at the top of POSTMAN to avoid unexpected crashes.

```
Step 3: X Step 4: Install Step 5: Get B Step 6: Get B Step 1: Get B Step 2: Set De Step 3: • Step 4: Get B Step 5: Set D Step 6: • +
```

TASK 6 – Create the Device Service Cluster

Hint: The rest of the queries will be run against BIG-IP 1.

In this portion of the lab we'll be creating the DSC.

Expand the Lab 3.4 'Device Service Cluster' collection.

1. This step adds a device group called lab3_4_group. Run this step and ensure you get a 200 OK response code.

In Steps 2 and 3 we'll add both BIG-IP's to this group. Run these steps and ensure you get a 200 OK response code.

- 2. Run Step 2 REST call
- 3. Run Step 3 REST call
- 4. In Step 4 we'll query this device-group we just created and we'll verify that it was created with both devices in the group and we'll also need to grab the machineld values from the output and copy them into the BODY of the call in Step 6.

▶ New Step 4: GET	machineId			Examples (0) 🔻
GET 🗸	https://{{bigip_a_mgmt}}/mgmt/shared/resolver/device-groups/lab3_4_group/devices	Params	Send 🗸	Save 🗸
Authorization	Headers (2) Body Pre-request Script Tests			Code
Туре	No Auth 🗸			
Body Cookies	Headers (22) Tests		Status: 200 C	K Time: 84 ms
Pretty Raw	Preview JSON V		D Q	Save Response
1 • { 2 • "iter 3 • 4 5 6 7 8	ns": [["uuid": "6bb2d7fa-11f5-447a-9fd8-7a5b26a09ace", "deviceUri": "https://10.128.1.245:443", "machineId": "5bb2d7fa-11f5-447a-9fd8-7a5b26a09ace", "state": "ACIIVE", "address": "10.128.1.245",			

5. This step is a formality as we've already created a call for you, but this is how you'd gain the body of a call you formulated yourself. We've done that in Step 6, so go ahead and move to the next step.

▶ Step 5: Get	Block ID			Examples (0) 🔻
GET 🗸	https://{{bigip_a_mgmt}}/mgmt/shared/iapp/blocks	Params	Send 🗸	Save 🗸
Authorization	Headers (2) Body Pre-request Script Tests			Code
Туре	No Auth			
Body Cod	kies Headers (22) Tests		Status: 200 O	K Time: 118 ms
Pretty	Raw Preview JSON V 📮		ΓQ	Save Response
112 113 114 115 116 117 118 • 119 120	<pre>"state": "BOUND", "generation": 2, "lastUpdateMicros": 1500395025391411, "kind": "shared:iapp:blocks:blockstate", "selfLink": "https://localhost/mgmt/shared/iapp/blocks/60d7bd4f-0574-461c-9d4e- }, { "id": "pcb0fae5-b497-3379-87f2-4e09d029ba5a", "name": "bigip-dsc", "instReportioc"; [</pre>	∙d9d0e312d	lc0a"	

6. In this step, we'll be creating the sync-failover group Lab_3.4_failover-cluster, adding a HA_VLAN on interface 1.3 and creating Self-IP's for those VLANS on both BIG-IP's.

You'll need to capture the machineld from step 4 for both BIG-IP's and paste it into the deviceReference under the section for each BIG-IP. The item to replace will be labeled as $\{machineId_BIGIP_X\}$ where X is 1 or 2.

▹ Step 6: Create	DSC						Exa	amples (()) 🔻
POST 🗸	https:// <mark>{{big</mark> i	ip_a_mgmt}}/	/mgmt/shared/iapp/blo	ocks	Params	Send	~	Save	~
Authorization	Headers (2)	Body 🔵	Pre-request Script	Tests					Code
form-data	x-www-form-	urlencoded	🖲 raw 🔍 binary	JSON (ap	oplication/json)	\sim			
10 • 11 12 13 • 14 • 15 16		"id": "clu "type": "J "value": [{ "h "d	sterMembers", SON", ostname": "bigip1. eviceReference": " -groups/lab3_4_g	lab", http://lo roup/devi	ocalhost/mgm ices/{machin	t/shared/re eId_BIGIP_1	solver }",	r/devic	e
17 18 19 20 ▼ 21 22 23 24 25 26 ▼ 27 28		"i "u "h "h },	<pre>p": "10.128.1.245" sername": "admin", assword": "admin", a_vlan": { "name": "HA_VLAN "tag": 3000, "interface": "1. "tagged": false a_selfip": { "name": "HA_SELF "address": "192.</pre>	, 3", IP", 168.1.10/	/24",				

Once you have these two properties updated, then please run the REST call. Take the ID from the top line of the response as we'll use that to verify that the status is BOUND in the following step.

7. Take the ID saved from the response from Step 6 and pasted it at the end of the URI, replacing {guid} as you've done before. Run this step until you see the state show as BOUND. If it shows as BINDING, then you can continue to run this command until you see BOUND or ERROR. The error should be self explanatory, but if you have trouble, please see a proctor.

Note: At this point, you should have a valid DSC in active/standby state. Verify that you have a new VLAN (HA_VLAN) and SelfIP for that VLAN and the cluster should be "In-Sync."

2.2.4 Final Notes

Here are a few helpful Solution Articles which helped us create this lab:

SOL 13250 - Overview of Port Lockdown Behavior

- TMOS v10.x v11.x: https://support.f5.com/csp/article/K13250
- TMOS v12.x v13.x: https://support.f5.com/csp/article/K17333

Even if you specify **Port Lockdown** as None this Solution states the following: *ICMP traffic is always* allowed, and if the BIG-IP systems are configured in a redundant pair, ports that are listed as exceptions are always allowed from the peer system.

SOL 13946 - Troubleshooting ConfigSync and device service clustering issues (11.X)

https://support.f5.com/csp/article/K13946

Ever see "Awaiting Initial Sync," "Sync Failure," or "Changes Pending" and don't know how to go about resolving the issue? This is a guide to keep handy if you're running in HA mode with 11.X and above. It will give you simple tests do diagnose the issues you will face and how to resolve them.

Version 13.0 Relase Notes

https://support.f5.com/kb/en-us/products/big-ip_ltm/releasenotes/product/relnote-ltm-13-0-0.html

New Built-in TCP Profiles, auto Nagle, auto Buffer tuning

Default TCP profiles are becoming read only for "troubleshooting purposes."

If you are using the default TCP profile, it is not optimal and can be less productive for your applications. Please see: https://devcentral.f5.com/articles/stop-using-the-base-tcp-profile

"When the latency penalty in using Nagle's algorithm is small, the feature assembles data into full-size packets; when it is high, it stops doing that."

Instead of analyzing traffic captures and setting send buffer/receive buffer sizes manually, customers can now select the auto option for send/receive buffer sizes and high/low watermarks for the TCP Proxy buffers

The content contained here leverages a full DevOps CI/CD pipeline and is sourced from the GitHub repository at https://github.com/f5devcentral/f5-agility-labs-adc. Bugs and Requests for enhancements can be made by opening an Issue within the repository.

Class 3: BIG-IP® Local Traffic Manager (LTM) - v13.1 Lab Guide

This lab guide is designed for you to get an understanding of the BIG-IP Local Traffic Manager (LTM) product.

3.1 Lab Overview

- F5 BIG-IP LTM VE, licensed using F5-BIG-VE-LAB-LIC
- Your BIG-IP is as close to factory default as possible. Only the following changes have been made:
- · The management IP has already been configured
- The initial setup has been completed. (Licensing and Platform information)
- · The Idle Timeout was modified from 1200 seconds to 7200 seconds
- The Welcome messages for the GUI and SSH were changed.
- An archive file base-setup-and-licensing.ucs was created allowing you to revert to the base settings above.

Note: Various directory and application services are available within the lab environment.

Warning: DO NOT COPY INFORMATION FROM THE SCREENSHOTS. THEY ARE FOR REFERENCE ONLY.

3.2 Scenario

Your customer has the following environment. The servers sit on the customers internal VLANs, the virtual servers will exist in another VLAN in the DMZ. The customer does not want to rework their networking and does not wish to use the LTM as the default gateway. Our solution will be to use SNATs to force traffic to pass through the BIG-IP to return through the LTM.

3.2.1 Lab 1: Access the Lab Environment

You will now gain access to your lab environment and your BIG-IP. The first agenda item is to log in to the training portal. After this, you will create a remote desktop session to the training environment and access your BIG-IP.

Access the Lab Environment

1. Using Firefox or Chrome open a connection to the training portal supplied by the instructor

- (a) Using the IP address supplied by the instructor log on to the training portal
 - i. http://<ip_address_supplied_by_instructor/

🛄 Training Portal	owered by Ravello Systems 🎸
Username	
Password	
Login	

- ii. User: Itm101studentX (where X is your student number)
- iii. Password: PielNtheSKYItm101
- (b) Open the blueprint or the view link.

👬 Training Portal		Hi, ltm101 student03 🕞 Log	out				
LTM Fundamental	s for v11						
This Lab is designed to help the student become familiar with F5 Network's BIG-IP v11 Local Traffic Management (LTM) system's basic features, functions and terminology. This Lab covers the basic load balance, acceleration, security and high availability features of the BIG-IP LTM. This hands-on Lab consists of lecture and labs, each student will configure their own BIG-IP LTM. This course will be an aid to students wanting to pursue F5 certifications. This Lab is designed to help the student become familiar with F5 Network's BIG-IP v11 Local Traffic Management (LTM) system's basic features, functions and terminology.							
Name	# of VMs	# of running VMs	Actions				
ltm-101-bp-v5	4	4	Q View				

(c) Find the Xunbutu jumpbox in the list of applications and select console to access the jumpbox via the browser. Alternately you can use the IP address associated with the jumpbox to access it via RDP.

	VM name	Status	IP	DNS	Actions	
	bigip01-v11.5.3-v12.0-no-license	STARTED			» Go!	🖵 Conso
	bigip02-v11.5.3-v12.0-no-license	STARTED			» Go!	🖵 Conso
	LAMP_3.6b	STARTED			» Go!	🖵 Conso
	xbun-jumpbox-v8	STARTED	85.190.180.144	xbunjumpboxv8-ltm101v115xltm101	» Go!	🖵 Conso

- (d) Access the **xbun-jumpbox** using the **Console** (watch for pop-up blockers)
 - i. User: f5student

- ii. Password: f5DEMOs4u
- 2. To access the BIG-IP open a new browser window and
 - (a) Click the bookmark bigip01
 - i. User: admin
 - ii. Nomenclature for GUI navigation begins on the side-bar and then goes to the pop-up or top-bar.

Hostname: chbigip202.f5se.com Date IP Address: 10.0.10.202 Time	te: Oct 11, 2012 User: admin ne: 3:17 PM (PDT) Role: Administrator
ONLINE (ACTIVE) Standalone	Top-Bar
Main Help About	Local Traffic » virue servers : Virtual Server List
Statistics	Virtual Server List Virtual Address List Statistics
iApp Side-Bar	* Search
Local Traffic	Status A Name + Application
Network Map	No record Pop-Out
Virtual Servers	Virtual Server List
Profiles	Virtual Address List
iRules	> Statistics >>
Boolon	man and a second and a second

iii. For example: Go to Local Traffic >> Virtual Servers >> Virtual List

3.2.2 Lab 2: The Basics (Networking, Pools and Virtual Servers)

In this lab we will access the Management GUI. We will then create the VLANs and assign self IP addresses to our VLAN. As mentioned during our lecture portion, BIG-IPs may be put in-line or one-armed depending on your customer's requirements and topology.

Creating VLANs

You will need create two untagged VLANs, one client-side VLAN (client_vlan and one server-side VLAN (server_vlan) for the devices in your network.

1. From the sidebar select Network >> VLANs then select Create

Ma	in Help	About	Network » VLANs : VLAN List	» New VLAN				
100 s	itatistics							
_			General Properties	General Properties				
i/	Apps		Name					
S	INS		Description					
(je) L	ocal Traffic		Тад					
	cceleration		Resources					
-				Interface: 1.1 V				
	evice Management			Tagging: Select				
				Add				
	letwork		Interfaces					
	Interfaces	F						
	Routes	÷		·				
	Self IPs	÷		Edit Delete				
	Packet Filters	×	Configuration Basic					
	Trunks	×.	Source Check					
	Tunnels	Þ	MTH					
	Route Domains	(+)	MIO	1500				
6	VLANs		sFlow					
	Service Policies		Polling Interval	Default Value: 10 seconds				
		, P	Sampling Data	Pofault Value: 2048 accords				
	Class of Service			Delauit Value. 2048 seconds				
	ARP	+	Cancel Repeat Finished					

- (a) Under General Properties:
 - i. Name: client_vlan
- (b) The name is for management purposes only, you could name them after your children or pets
 - i. Tag: <leave blank>

A. Entering a tag is only required for "**Tagged**" (802.1q interfaces. "**Untagged**" interfaces will automatically get a tag which is used for internal L2 segmentation of traffic.

- (c) Under Resources in the Interfaces section:
 - i. Interface: 1.1
 - ii. Tagging: Untagged
 - iii. Select the Add button. Leave all other items at the default setting.

Resources	
Interfaces	Interface: 1.2 Tagging: Untagged Add 1.1 (untagged)
	Edit Delete

When you have completed your VLAN configuration, hit the **Finished** button Create another untagged VLAN named **server_vlan** on interface **1.2**.

Assigning a Self IP addresses to your VLANs

Go to Network >> Self IPs, select Create.

Main Help About	Network » Self IPs » New Self	riP						
Statistics								
_	Configuration							
iApps	Name							
S DNS	IP Address							
Local Traffic	Netmask							
	VLAN / Tunnel	client_vlan •						
Acceleration	Port Lockdown	Allow None						
Device Management	Traffic Group	Inherit traffic group from current partition / path traffic-group-local-only (non-floating)						
Retwork	Service Policy	None T						
Interfaces >								
Routes 📀	Cancel Repeat Finished							
Self IPs 📀								
	and the man	and and the second of the						

- 1. Create a new self IP, for the **server_vlan** and **client_vlan** VLANs.
 - (a) In Network >> Self IPs >> New Self IP, under Configuration enter:

	Server-Side	Client-side
Name:	server_ip	client_ip
IP Address:	10.1.20.245	10.1.10.245
Netmask:	255.255.255.0	255.255.255.0
VLAN:	server_vlan	client_vlan
Port **Lockdown**:	Allow None	Allow None

The default "Allow None" means the Self IP would respond only to ICMP.

- (b) The "Allow Defaults" selection opens the following on the self IP of the VLAN
 - i. TCP: ssh, domain, snmp, https
 - ii. TCP: 4353, 6699 (for F5 protocols, such as HA and iQuery)
 - iii. UDP: 520, cap, domain, f5-iquery, snmp
 - iv. PROTOCOL: ospf

Note: Even with "**Allow None**" chosen, traffic destined for a virtual server or object on the F5 (e.g. NAT) are able to pass through without issue as any object created on the F5 is by default allowed to pass through.

When you have completed your self-IP configuration, hit the Finished button. You should have something similar to the following

Netw	ork » Self IPs						
⇔.	Self IP List						
*		Search					
	Name	Application	IP Address	Netmask	VLAN / Tunnel	Traffic Group	
	client_ip		10.1.10.245	255.255.255.0	client_vlan	traffic-group-local-only	Comn
	server_ip		10.1.20.245	255.255.255.0	server_vlan	traffic-group-local-only	Comn

Assigning the Default Gateway

- 1. Go to Network > Routes and then Add.
 - (a) Here is where we assign our default gateway (and other static routes as desired)

Network » Routes » New Route							
Properties							
Name	default_gateway						
Description							
Destination	0.0.0.0						
Netmask	0.0.0.0						
Resource	Use Gateway 🗘						
Gateway Address	IP Address ♦ 10.1.10.1						
MTU							

(b) Under Properties

- i. Name: default_gateway
- ii. Destination: 0.0.0.0
- iii. Netmask: 0.0.0.0
- iv. Resource: Use Gateway...
- v. Gateway Address: 10.1.10.1

vi. When you have completed defining your default gateway, hit the Finished button

- 2. Verify your network configuration
 - (a) Ping your client-side self IP (10.1.10.245) to verify connectivity
 - (b) Use an SSH utility, such as puTTY, to access your BIG-IP management port at 10.1.1.245.
 - i. User: root Password: default
 - ii. Ping your default gateway, 10.1.10.1
 - iii. Ping a web server at 10.1.20.11.

Creating Pools

In this lab we will build a pool and virtual server to support our web site and verify our configurations by accessing our web servers through the BIG-IP. Verification will be performed visually and through various statistical interfaces.

1. From the sidebar, select Local Traffic >> Pools then select Create. Here we will create our new pool

Local Traffic » Pools : Pool List	: » New Pool
Configuration: Basic 🔻	
Name	
Description	
Health Monitors	Active Available /Common gateway_icmp http http_head_f5 https
Resources	
Load Balancing Method	Round Robin
Priority Group Activation	Disabled •
New Members	New Node New FQDN Node Node Name: Address: Service Port Add Edit Delete

- (a) Under **Configuration**:
 - i. Name: www_pool

A. The name is for management purposes only, no spaces can be used

- ii. **Description**: <optional>
- iii. Health Monitor: http

- (b) Under Members:
 - i. Load Balancing Method: <leave at the default Round Robin>
 - ii. Priority Group Activation: <leave at default>
 - iii. New Members:

Address	Service Port
10.1.20.11	80
10.1.20.12	80
10.1.20.13	80

iv. As you enter each IP address and port combination, hit the Add button

Local Traffic » Pools : Pool List										
.⇔	Pool List	t	Statistics							
*				Search	ŋ			Create		
	Status	▲ Name				Application	Members	Partition / Path		
	0	www_poo	bl				3	Common		
Delet	e									

When you have completed your pool configuration, hit the Finished button

Creating Virtual Servers

Now let's build our virtual server

1. Under Local Traffic >> Virtual Servers, click the "+" icon

Name	
Description	
Туре	Standard •
Source Address	
Destination Address/Mask	
Service Port	Select V
Notify Status to Virtual Address	
State	Enabled •
Configuration: Basic 🔻	
-	TCB

- (a) Under General Properties
 - i. Name: www_vs
 - ii. Description: <optional>

- iii. Type: Standard
- iv. Source/Address: <leave blank>

Note: The default is 0.0.0.0/0, all source IP address are allowed

v. Destination Address/Mask: 10.1.10.100

Note: The default mask is /32

- vi. Service Port: 80 or HTTP
- (b) Under Configurations
 - i. The web servers do not use the BIG-IP LTM as the default gateway. This means return traffic will route around the BIG-IP LTM and the TCP handshake will fail. To prevent this we can configure SNAT Automap on the Virtual Server. This will translate the client IP to the self IP of the egress VLAN and ensure the response returns to the BIG-IP.
 - ii. Source Address Translation: Auto Map

WEAR and Tunha-rafic	
Source Address Translation	None V
	Auto Map None

(c) Under Resources

- i. iRules: none
- ii. **Default Pool**: From the drop down menu, select the pool (**www_pool**) which you created earlier
- iii. Default Persistence Profile: None
- iv. Fallback Persistence Profile: None

When you have completed your virtual server configuration, hit the Finished button

You have now created a Virtual Server (Note: Items in blue are links)

Lo	Local Traffic » Virtual Servers : Virtual Server List												
₿		Virtua	I Se	erver List	Virtual Address Lis	st Statistics	*						
*						Search							Cre
	ŀ	 Statu 	IS	▲ Name		Description	Applica	ition	Destination	Service Port	Type	Resources	Partition
		0		www_vs					10.1.10.100	80 (HTTP)	Standard	Edit	Common
En	abl	e Dis	abl	e Delete									

- 1. Now let's see if our virtual server works!
 - (a) Open the browser to the Virtual Server you just created

(b) Refresh the browser screen several times (use "<ctrl>" F5)

- Go to your BIG-IP and view the statistics for the www_vs virtual server and the www_pool pool and its associated members
- Go to Statistics > Module Statistics > Local Traffic
 - Choose Virtual Servers from drop down

Overview » Statistics : Local Traffic									
🔅 👻 Local Traffic	Network	Memory							
Display Options									
Statistics Type	Status Sur	mmary 💌							
Data Format	Normalize	Normalized 💌							
Auto Refresh	Disabled	- Refresh							
Local Traffic Summary									
Object Type Total			Available	🛆 Unavailable	🔶 Offline	Unknown			
Virtual Servers 1			1	0	0	0			
Pools 1	1	0	0	0					
Nodes 3			3	0	0	0			

- Go to Local Traffic >> Virtual Servers >> Statistics
- Go to Local Traffic >> Pools >> Statistics
 - Did each pool member receive the same number of connections?
 - Did each pool member receive approximately the same number of bytes?
 - Note the Source and Destination address when you go to directly and through the virtual server

- Let's archive our configuration in case we have to fall back later.
 - Go to System >> Archives and select Create.
 - * Name your archive lab2_the_basics_net_pool_vs

3.2.3 Lab 3: Load Balancing, Monitoring and Persistence

Objectives:

- · Configure and review Ratio load balancing
- · Build and test priority groups
- Build a content monitor that looks for a receive string and requires authentication
- Build and review simple (source IP) persistence and cookie persistence.

Ratio Load Balancing

1. Go to Local **Traffic** >> **Pools** and select **www_pool** and then **Members** from the top bar or you could click on the **Members** link in the Pool List screen.

Local Traffic » Pools : Pool List											
.⇔	Pool Lis	t	Statistics								
+				(De arch)					Questa		
1				Search					Create		
	Status	▲ Name			\Rightarrow Description	Application	Me	mbers	Partition / Path		
	0	fqdn_poo					4		Common		
	0	www_poo	bl				3		Common		
Delete	ə										

Note: When we created the pool, we performed all of our configurations on one page, but when we modify a pool the **Resource** information is under the **Members** tab

- 2. Under Load Balancing section
 - (a) Change the Load Balancing Method to Ratio (Member)
 - (b) As you look at the drop-down menu, notice most load balancing methods have two options: (Node) or (Member). Remember the difference?

Local Traffic » Pools : Pool List » www_pool										
🚓 🗸 Properties Merr	nbers Statistics 🗵									
, , , , , , , , , , , , , , , , , , ,										
Load Balancing	Round Robin									
Load Balancing Method	✓ Ratio (member)									
Ignore Persisted Weight	Least Connections (member) Observed (member)									
Priority Group Activation	Predictive (member) Ratio (node)									
Update	Least Connections (node) Fastest (node)									
Current Members	Observed (node) Predictive (node)									
Status	Dynamic Ratio (node) Fastest (application)									
0 10.1.20.11:80	Least Sessions	10.1.20.11 80								
0 10.1.20.12:80	Dynamic Ratio (member) Weighted Least Connections (member)	10.1.20.12 80								
0 10.1.20.13:80	Weighted Least Connections (node)	10.1.20.13 80								
Enable Disable Force Offlin	Ratio (session) Ratio Least Connections (member) Ratio Least Connections (node)									

- (c) Don't forget the Update button
- (d) Then under Current Members
 - i. Select the first member in the pool **10.1.20.11:80**.
 - ii. Under the **Configuration** section
 - A. Change the Ratio of the member to 3

Local Traffic » Pools : P	Local Traffic » Pools : Pool List » www_pool										
🔅 🚽 Properties	Members	Statistics 🖪									
Member Properties											
Node Name	10.1.20.11										
Address	10.1.20.11	10.1.20.11									
Service Port	80										
Partition / Path	Common										
Description											
Parent Node	10.1.20 .	10.1.20.11									
Availability	Available	Available (Enabled) - Pool member is available 2018-05-29 16:56:28									
Health Monitors	http	le http									
Monitor Logging	Enable										
Current Connections	0	0									
State	 Enabled Disabled Forced C 	Enabled (All traffic allowed) Disabled (Only persistent or active connections allowed) Forced Offline (Only active connections allowed)									
Configuration: Basic	\$										
Ratio	3										
Priority Group	0										
Connection Limit	0										
Connection Rate Limit	0										

(e) Select the Update button

- 3. Verification
 - (a) Check the pool statistics by selecting Statistics on the top bar, if you are still in Local Traffic >> Pools, or by going to Statistics >> Module Statistics >> Local Traffic and selecting Pool from Statistics Type.
 - (b) Reset the statistics for your **www_pool** pool by checking the boxes next to the pool members and hitting the **Reset** button
 - i. Browse to your www_vs (10.1.10.100) virtual server
 - ii. Refresh the browser screen several times (use "<ctrl>" F5)
 - iii. Select the Refresh button on the Statistics screen
 - iv. How many total connections has each member taken?
 - v. Is the ratio of connections correct between the members?
 - (c) Now go back and put the pool load balancing method back to Round Robin
 - i. Reset the statistics
 - ii. Refresh the virtual server page several times
 - iii. Refresh the statistics
 - iv. Does the ratio setting have any impact now?

Priority Groups Lab

Let's look at priority groups. In this scenario we will treat the **.13** server as if it were in a disaster recovery site that can be reached over a backhaul. The customer would like to maintain at least two members in the pool for redundancy and load. They would find this beneficial to allow connections to proceed during a maintenance window or during an outage.

- 1. Go to Local Traffic >> Pools >> www_pool
 - (a) Select the Members tab.
 - i. Set the Load Balancing Method back to Round Robin
 - ii. Set the **Priority Group Activation** to **Less than ... 2** Available Members.

Local	Local Traffic » Pools : Pool List » www_pool												
⇔ +	Propertie	s	Members	St	tatistics								
				,									
Load E	Balancing												
Load	Balancing	Method	Round	d Robin			\$						
Priori	ty Group A	ctivation	Less	han	\$2		Availab	le Member(s)					
Updat	e												
Currer	nt Member	s											
	 Status 	Member					 Address 	Service Port		Ephemeral	Ratio	Priority Group	Conn
	0	10.1.20.11	:80				10.1.20.11	80		No	1	0 (Active)	0
	0	10.1.20.12	:80				10.1.20.12	80		No	1	0 (Active)	0
	0	10.1.20.13	:80				10.1.20.13	80		No	1	0 (Active)	0
Enabl	e Disabl	e Force C	Offline Remo	/e									

- (b) Don't forget to hit the **Update** button
- (c) Select the pool members 10.128.20.11 and 10.128.20.12 and set their Priority Group to 2.
 - i. This will allow you to change the priority on that particular member.

Local Traffic » Pools : Pool List » www_pool										
🔅 🚽 Properties	Members	Statistics								
		1								
Member Properties										
Node Name	10.1.20.11									
Address	10.1.20.11									
Service Port	80									
Partition / Path	Common									
Description										
Parent Node	10.1.20	10.1.20.11								
Availability	Availab	Available (Enabled) - Pool member is available 2018-05-29 16:56:28								
Health Monitors	http	● http								
Monitor Logging	Enable	Enable								
Current Connections	0	0								
State	 Enable Disable Forced 	Enabled (All traffic allowed) Disabled (Only persistent or active connections allowed) Forced Offline (Only active connections allowed)								
Configuration: Basic	¢									
Ratio	1									
Priority Group	2									
Connection Limit	0									
Connection Rate Limit	0	0								
Update Delete										

- 2. Review your settings and let's see how load balancing reacts now
 - (a) Select the **Statistics** tab.
 - (b) Reset the pool statistics.
 - (c) Browse to your virtual server and refresh several times.
 - (d) Refresh your statistics.
 - (e) Are all members taking connections?
 - (f) Which member isn't taking connections?
- 3. Let's simulate a maintenance window or an outage by disabling a pool member in the highest priority group (2).

Note: F5 ranks priority from low number to high number. This means, a priority of 1 has a lower priority than 2, and onwards.

This should cause priority group activation to kick in, since the number of active members in our high priority group has dropped below one.

- 4. Select the member in the Priority Group 2 and Disable that pool member.
 - (a) Select the **Disable** button

Local Traffic » Pools : Pool List » www_pool											
⇔ -	Propertie		Members	Statistics							
Load B	Balancing										
Load	Balancing	Method	Round Ro	bin	\$						
Priorit	Priority Group Activation										
Updat	е										
Curren	t Member	s									
	 Status 	Member	r		▲ Address	Service Port	≑ FQDN	Ephemeral	Ratio	Priority Group	Connection Line
	0	10.1.20.11	1:80		10.1.20.11	80		No	1	2 (Active)	0
	0	10.1.20.12	2:80		10.1.20.12	80		No	1	2 (Active)	0
	0	10.1.20.13	3:80		10.1.20.13	80		No	1	0 (Active)	0
Enable	e Disable	Force	Offline Remove								

- (b) The status indicator now goes to black, indicating the member has been disabled
- 5. Once again, select **Statistics**, reset the pool statistics, browse to the virtual server and see which pool members are taking hits now.

Once you are done testing re-enable your disabled pool member.

Monitor Labs

Objective:

- · Build a default monitor for nodes
- Build a content monitor for your pool

Default Monitors

- 1. Go to Local Traffic >> Nodes, note the status of the nodes.
 - (a) Note that the nodes exist in this table, even though they were never specifically configured in the Node section of the GUI. Each time a unique IP address is placed in a pool a corresponding node entry is added and assigned the default monitor (if any).
 - (b) Select the Default Monitors tab.

Local Traffic » Nodes : Default Monitor										
🔅 🗸 Node List	Defaul	Ilt Monitor Statistics								
Configuration: Basic	•									
Health Monitors		Acti	ve •	K K	Available /Common gateway_icmp https_443 icmp real_server	•				
Update			Ŧ		real_serv	er				

(c) Notice we have several options. For nodes you will want a generic monitor, so we will choose **icmp**.
- (d) Select **icmp** from the **Available** box and hit
- (e) Click on the **Update** button to finalize your changes.
- 2. Select Node List or Statistics from the top tab.
 - (a) What are your node statuses?
- 3. Select Statistics >> Module Statistics >> Local Traffic
 - (a) What are the statuses of your nodes, pool and virtual server?

For those of you who did the **FQDN Pool** extra credit lab, you will notice your FQDN in the node list. The status should be **Available** (Green) even though there wasn't a monitor. This is because a good status indicates the BIG-IP successfully queried the DNS server for the name. Click on the FQDN node to see additional options, such as query interval.

Content Monitors

The default monitor simply tells us the IP address is accessible, but we really don't know the status of the particular application the node supports. We are now going to create a monitor to specifically test the application we are interested in. We are going to check our web site and its basic authentication capabilities.

- 1. Browse to http://10.1.10.100 and on the web page select the Basic Authentication link under Authentication Examples.
 - (a) User: user.1
 - (b) Password: password
 - (c) You could use text from this page or text within the source code to test for availability. You could also use HTTP statuses or header information. You will be looking for the HTTP status "200 OK" as your receive string to determine availability.
 - (d) Note the URI is /basic. You will need this for your monitor.
- 2. Select Local Traffic >> Monitor on the side-bar and select the plus (+) sign or Create

Ma	in	Help	About	Loc	al Traffic » Monitors				
100 s	Statistic	s		÷	← Monitor List				
i/	Apps			*		Search			Create
S)N S				▲ Name		Application	💌 Туре	Partition / Path
<u> </u>					gateway_icmp			Gateway ICMP	Common
	.ocal Ir	affic			http			HTTP	Common
	Netw	ork Map			http_head_f5			HTTP	Common
	Virtua	al Servers	÷.		https			HTTPS	Common
	Poli	icies	•		https_443			HTTPS	Common
	Pro	files	•		https_head_f5			HTTPS	Common
	iRu	les	•		icmp			ICMP	Common
	Poo	ols			inband			Inband	Common
	Nor	doe			real_server			Real Server	Common
	Manit				snmp_dca			SNMP DCA	Common
	Monit	ors	0		tcp			TCP	Common
	Traffic	c Class	(+)		tcp_echo			TCP Echo	Common
	Addre	ess Translatio	on >		tcp_half_open			TCP Half Open	Common
				udp			UDP	Common	
••••••••••••••••••••••••••••••••••••••	ccelera	auon		Del	ete				Show All (14) 🔻

- (a) Now we can create a monitor to check the content of our web page to ensure things are running properly.
 - i. Name: www_test
 - ii. **Type**: HTTP

Local Traffic » Monitors » New	Monitor	
Conoral Droportion		
Name		
Type	Coloct	
Type	Select	
-	Select	
Cancel	Diameter	
	External	
	FIREPASS	
	FIP Cotowoul CMD	
	Galeway ICMP	=
	UTTPS	
	ICMP	
	IMAP	
	Inband	
	LDAP	
	Module Score	
	MSSQL	
	MySQL	
	NNTP	
	Oracle	
	POP3	
	PostgreSQL	
	RADIUS	-

- (b) Once you have selected you parent (Type) monitor, you can access the Configuration section
 - i. Send String: Enter the command to retrieve the page you want "GET /basic/r\n" (no quotes)
 - ii. In the Receive String box put "200 OK" (no quotes)

Note: The receive string is not case sensitive.

iii. Enter user.1/password for the Username and Password

Local Traffic » Monitors » New Monitor					
General Properties					
Name	www_test				
Description					
Туре	HTTP				
Parent Monitor	http •				
Configuration: Basic					
Interval	5 seconds				
Timeout	16 seconds				
	GET /basic/\r\n				
Send String					
	200.0%				
	200 04				
Receive String					
Receive Disable String					
	/				
User Name	user.1				
Password					
Reverse	○ Yes No				
Transparent	○ Yes ● No				
Alias Address	* All Addresses				
Alias Service Port	* All Ports V				

- (c) Click Finish and you will be taken back to Local Traffic >> Monitors
- 3. Where is your new Monitor?

- (a) **Hint:** Check the lower right hand corner of the Monitors list. Here you can go to the next page or view all Monitors
- (b) You can change the number of records displayed per page in System >> Preferences
- 4. Go to Local Traffic >> Pools >> www_pool and choose Properties from the top bar
 - (a) Remove the **http** monitor from the Active box.
 - (b) Select the **www_test** monitor from the Available monitor's window in the **Configuration** section and move it to the Active window.

Local Traffic » Pools : Pool List » www_pool									
🔅 👻 Properties	Memt	ers Statistics 🗵							
General Properties									
Name		www_pool							
Partition / Path		Common							
Description									
Availability		Available (Enabled) - The pool is available							
Configuration: Basic	•								
		Acti	ve		Available				
Health Monitors			*	tcp tcp_half_open test_www udp www_test	•				
Update Delete									

- 5. Once you have selected your parent (Type) monitor, you can access the Configuration section
 - (a) Select Statistics from the tabs.
 - (b) What is the status of the pool and its members?
- 6. Go to Local Traffic >> Virtual Servers. What is the status of your virtual server?
 - (a) Browse to your www_vs virtual server. Which members are taking traffic?
 - (b) Just for fun reverse the monitor. Now when **200 OK** is returned it indicates the server is not responding successfully. You can see where this would be useful if you were looking for a 404 (bad page) response.

Monitor Testing

There is now the ability to test monitors. This is tremendously helpful as you no longer need to create monitors and add them to false objects on the BIG-IP. The functionality is now built in to the monitor itself to be less invasive on your infrastructure, and less time consuming all together.

- 1. Go to Local Traffic >> Pools >> www_pool
 - (a) Under **Configuration**, move the active monitor to **Available**
- 2. Go to Monitors and click on http
 - (a) Click the **Test** tab
 - (b) Under Address plug in 10.1.20.11 and in the port field plug in 80
 - (c) Click Test

Local Traffic » Monitors	» http		
🚓 🚽 Properties	Instances	Test	
Test			
Address	10.1.20.11	: 80	
Result	LTM::Monitor Monitor Test Destination: Last state: State time: Last result: Sea	r /Common/http Result: : 10.1.20.11:80 up 2018.06.01 09:38:54 Test Completed (UP) e /var/log/monitors/C	4 (0hr:0min:10sec ago) ommon_http-Common_monitor_test-80.log
Test			

- (d) Go back to Local Traffic >> Pools >> www_pool
 - i. Once here, move http back to Active

Persistence Labs

In this lab we will configure a couple types of persistence and view their behavior. For persistence, profiles will have to be created and attached to our virtual server.

Lab Requirements:

- Prior to beginning the lab verify your **www_pool** has been set to the following parameters:
 - Load Balancing Method: Round Robin
 - Priority Group Activation: Disable
 - * The members **Ratio** and **Priority Group** mean nothing since we aren't using Ratio load balancing and Priority Groups are disabled.
 - Hit Update
 - Hit your virtual server several times, you should see all 3 servers respond.

Simple (Source Address) Persistence

- 1. Go to Local Traffic >> Profiles and select the Persistence tab.
 - (a) From the **Persistence Profiles** screen select the **Create** button.

Local	Traffic » Pro	files : P	ersistence							
	Services	-	Content		Databases		Persistence	Protocol	+	
SSL		Auth	entication	✓ Mess	age Routing 👻	Other	-			

*		Search]			Create.
	▲ Name	÷	Application	Type	Parent Profile	Partition / Pat
	cookie			Cookie	(none)	Common
	dest_addr			Destination Address Affinity	(none)	Common
	hash			Hash	(none)	Common
	msrdp			Microsoft® Remote Desktop	(none)	Common
	sip_info			SIP	(none)	Common
	source_addr			Source Address Affinity	(none)	Common
	ssl			SSL	(none)	Common
	universal			Universal	(none)	Common

(b) At the New Persistence Profile screen enter:

- i. Name: my-src-persist
- ii. Persistence Type: Source Address Affinity

General Properties		
Name		
Persistence Type	Source Address Affinity	
Parent Profile	source_addr V	
Configuration		Custom 🗆
Match Across Services		
Match Across Virtual Servers		
Match Across Pools		
Hash Algorithm	Default 🔻	
Timeout	Specify 🔻 180	seconds
Prefix Length	None 🔻	
Map Proxies	Enabled	
Override Connection Limit		
Cancel Repeat Finished		

- (c) This will add the **Configuration** section to the **General Properties** section.
 - i. Note the parent profile.
- (d) In the Configuration section, set the

- i. Timeout: 60 seconds
- ii. Prefix Length: None
 - A. This is the default and is a /32 prefix (255.255.255.255 mask).
 - B. Each new IP address will create a new persistence record.
- iii. **Hint**: You can't change these settings until you have checked the Custom box. This prevents unwanted or unauthorized changes from within the GUI, without explicitly allowing it. Also, it allows you to know what has changed from the default settings.
- (e) You have just created your first custom Profile.
 - i. Note the check box for your new custom profile isn't grayed out and can be selected to allow you to delete the profile if desired.
- 2. Now let's attach our new profile to the virtual server.
 - (a) Go to Local Traffic >> Virtual Server and
 - i. Select www_vs and the Resources tab or
 - ii. Take the shortcut directly to the Resources of the virtual server. (Can you find it?)
 - (b) Set the Default Persistence Profile to my-src-persist.

Local Traffic » Virtual Se	rvers : Virtual Serv	rver List » www_vs
🔅 🗸 Properties	Resources	Statistics 🗵
Load Balancing		
Default Pool	www_pool	
Default Persistence Profile	e None	×
Fallback Persistence Prof	ile /Common cookie	את פ
Update	dest_ad hash	addr
iRules	msrdp my-src-r) Manage
Name	sip_info	fo
No records to display.	source_ ssl	e_addr
HTTP Class Profiles	universa	sal Manage
Name		
No records to display.		

- (c) Don't forget to Update before leaving the page. (Be careful, the reminders will stop!)
- (d) Testing Source Address Affinity
 - i. At this point you may want to open a second browser window to the management GUI.
 - ii. From one management window go to Statistics >> Module Statistic >> Local Traffic
 - iii. Select Persistence Records for the Statistics Type menu

Statistics » M	lodule Statisti	cs : Local Traffic									
😛 🚽 Traffic S	Summary 👻	Local Traffic	Network		•	Memory					
Display Options	i										
Statistics Type		Persistence R	Persistence Records V								
Data Format		Status Summ Virtual Servers Virtual Addres	Status Summary Virtual Servers Virtual Addresses Policies Profiles Summary								
Auto Refresh	Auto Refresh										
Local Traffic Su	mmary	Profiles - Stati Pools	stics								
Object Type	Total	Nodes			0	Available	🛆 Una	vailable	🔶 Offline		Unknowr
Virtual Servers	1	SNATS SNAT Pools			1		0		0	0	
Pools	1	SNAT Transla	tions		1		0		0	0	
Nodes	Nodes 3		NATS Persistence Records		3		0		0	0	
		DNS Express DNS Cache	Zones								

- 3. At this point you will see that the Persistence Records statistics display has been disabled (way back in v12.1). A TMSH database command is required to activate it.
 - (a) SSH to you BIG-IP at 10.1.1.245. Username: root Password: default
 - (b) At the prompt enter: tmsh
 - (c) At the TMSH prompt enter the command in the Persistence Value GUI.
 - i. modify sys db ui.statistics.modulestatistics.localtraffic.persistencerecords value true
 - A. Tab completion will make this a little easier
- 4. Now, in this window you can watch your persistence records. You may want to set **Auto Refresh** to 20 seconds.

Statistics » Module Statistic	Statistics » Module Statistics : Local Traffic » Persistence Records								
🔅 🚽 Traffic Summary 🔫	Local Traffic	Subscriber Management	Network	Memory	System				
					,	_			
Display Options									
Statistics Type	Persistence R	Records 🗘							
Data Format	Normalized	•							
Auto Refresh	Disabled	Refresh							
*	Sear	ch							
 Persistence Value 				💌 Per	sistence Mode	Virtual Server	Pool	Pool Mem	
10.1.10.51				Source	Address Affinity	www_vs	www_pool	10.1.20.12:8	

- 5. In your other management GUI window go to www_pool and clear the member statistics.
 - (a) Open a browser session to your virtual server and refresh several times.
 - (b) How many members are taking traffic?
 - (c) Check you Persists Records window. Are there any persistence records?
 - i. If you are not Auto Refreshing, don't forget to hit Refresh

(d) Refresh you web page prior to the Age column reaching 60. What happens?

Cookie Persistence (Cookie Insert)

- 1. Go to Local Traffic >> Profiles >> Persistence tab and hit Create
 - (a) Let's name our profile my_cookie_insert (original isn't it)
 - (b) Our Persistence Type will be Cookie
 - (c) This brings us to the **Configuration** section.

Local Traffic » Profiles : Persistence » New Persistence Profile							
General Properties							
Name							
Persistence Type	Cookie						
Parent Profile	cookie 🔻						
Configuration		Custom 🗌					
Cookie Method	HTTP Cookie Insert 🔹						
Cookie Name							
HTTPOnly Attribute	Enabled V						
Secure Attribute	Enabled V						
Always Send Cookie							
Expiration	Session Cookie						
Cookie Encryption Use Policy	disabled 🔻						
Encryption Passphrase							
Override Connection Limit							

- 2. As you can see, the default **Cookie Method** is **HTTP Cookie Insert**, so we won't have to modify the **Cookie Method**
 - (a) The BIG-IP will also create a cookie name for you using a combination of "**BIGipServer**" and the pool name the virtual server service. We will take this default also.
 - (b) We will use a **session** cookie. Which means the cookie is deleted when the browser is closed.
 - (c) Select Finished
 - (d) Now attach your cookie persistence profile to your virtual server's **Default Persistence Profile** by:
 - i. Go to Local Traffic >> Virtual Server >> www_vs >> Resources tab
 - ii. Set the Default Persistence Profile to my_cookie_insert
 - iii. Hit Update

(e) Whoa! Did you just get this error message?

Local Traffic » Virtual Se	Local Traffic » Virtual Servers : Virtual Server List » www_vs						
🗱 🗸 Properties	Resources	Statistics					
\rm \rm 01070309:3: Cookie	persistence requir	es an HTTP or Fa	stHTTP profile	to be associate	ed with the virtual server		
Load Balancing							
Default Pool	www_pool	•					
Default Persistence Profile	cookie	•					
Fallback Persistence Profi	le None	•					
Update							

- (f) Remember what we said earlier about some Profiles requiring prerequisite Profiles? Since we are looking in the HTTP header for the cookie the prerequisite for the Cookie Profile is the HTTP profile.
- 3. We will have to go to the virtual server to add the HTTP profile, prior to adding the Cookie Persistence profile.
 - (a) Select the Properties tab on your virtual server
 - (b) Go to HTTP Profile in the Configuration section and select the default HTTP (http) profile.

Local Traffic » Virtual	Servers : Virtual S	erver List » ww	w_vs	
🕁 🚽 Properties	Resources	Statistics		
General Properties	1	,		
Name	www_vs			
Partition / Path	Common			
Description				
Туре	Standar	rd 🔶)	
Source Address	0.0.0/0	0		
Destination Address/Mas	k 10.1.10.	100		
Service Port	80	HTTP	\$	
Notify Status to Virtual Ac	ldress 🔽			
Availability	🥥 Availa	ble (Enabled) - Th	e virtual server is ava	ailable
Syncookie Status	Off			
State	Enabled	¢ t		
Configuration: Basic	\$			
Protocol	ТСР	\$		
Protocol Profile (Client)	tcp		¢	
Protocol Profile (Server)	(Use Cl	ient Profile)	\$	
HTTP Profile	✓ None			
HTTP Proxy Connect Pro	ofile /Comm	ion		
FTP Profile	http	-explicit -transparent		
RTSP Profile	None	•		

- (c) Hit the Update button
- (d) Now we can go back to the **Resource** tab and add our cookie persistence profile.
- 4. Testing cookie persistence.
 - (a) If you wish you can watch the member statistics to validate your persistence.
 - (b) Open a new browser session to your virtual server and refresh several times.
 - (c) Does the page ever change?
 - (d) Did you hit a different server?
 - (e) Refresh several times. Are you hitting the same server?
 - i. On the web page under HTTP Request and Response Information click the Display Cookie link.

Archive your work in the file: lab3_lb_monitor_and_persist

3.2.4 Lab 4: Accelerating Applications Lab

Objectives:

- · Assign client-side and server-side profiles
- · Set up caching for your web site
- · Set up compression for your web site

Lab Prerequisites:

• Prior to starting this lab remove the cookie persistence profile from your virtual server.

TCP Express

- 1. Set client-side and server-side TCP profiles on your virtual server properties.
 - (a) In some earlier version you would be required to select the **Advanced** menu to see the Client and Server protocol profiles.

Configuration:	Basic 🔻	
Protocol	Basic Advanced	TCP
Protocol Profile (Client)		tcp
Protocol Profil	e (Server)	(Use Client Profile)
HTTP Profile		http

- (b) If you chose to use the Advanced menu you would see a whole array of new options. There are Basic and Advanced drop downs on many of the GUI menus. You can always see Advanced menus by changing the preferences in System >> Preferences.
- (c) From the drop-down menus place the **tcp-wan-optimized** profile on the client-side and the **tcplan-optimized** profile on the server-side.

comgaration.		
Protocol	TCP	
Protocol Profile (Client)	tcp 🔻]
Protocol Profile (Server)	apm-forwarding-client-tcp	
HTTP Profile	apm-forwarding-server-tcp mptcp-mobile-optimized	
FTP Profile	tcp tcp-lan-optimized	
RTSP Profile	tcp-legacy tcp-mobile-optimized	
SSH Proxy Profile	tcp-wan-optimized	
	wam-top-wan-optimized	Available
SSL Profile (Client)	wom-tcp-wan-optimized	pmmon clientssl clientssl-insecure-compatible

HTTP Optimization - RamCache Lab

- 1. Visit your virtual server's web page and refresh it several times. Note the Source Node for the pictures of the BIG-IPs. They change depending on where the connection is coming from. The Source Node information is part of the picture.
- Go to Local Traffic >> Profiles >> Services >> Web Acceleration or Acceleration >> Profiles >> Web Acceleration
 - (a) Create a new profile named www-opt-caching using optimized-caching as the Parent Profile.
 - (b) Take all the defaults, no other changes are required.
- 3. Open up your www_vs virtual server.
 - (a) At the HTTP Profile drop down menu make sure http is selected.
 - (b) Under Acceleration at Web Acceleration Profile select your new caching profile; www-optcaching

- (c) Clear the statistics on your pool and the refresh the main web page several times.
 - i. The pictures do not change. Why do you think that is?
 - ii. Go to your pool. Are all pool members taking connections?
- 4. Now go to Statistics >> Module Statistics >> Local Traffic on the sidebar. From the Statistics Type drop-down menu select Profiles Summary

Main Help /	About	Statistics » M	odule Statisti	cs : Local Traffic	» Status Su	mn
Mage Statistics		🗱 👻 Traffic S	ummary 👻	DNS	▼ Local 1	Traffi
Dashboard Modulo Statistics		Display Options				-
Performance	, 	Statistics Type		Profiles Sur	mmary 🔻	R
inns.	_	Data Format		Virtual Servi	imary ers esses	
10 mhha		Auto Refresh		Policies	00000	
S DNS		Local Traffic Su	nmary	Profiles Su Profiles - St	nmary atistics	
Cocal Traffic		Object Type	Total	iRules		
		Virtual Servers	1	Nodes SNATs		
Acceleration		Pools	1	SNAT Pools	s 	5
Device Management		Nodes	3	NAT Trans	slations	Ş

5. Select the View link next to the Web Acceleration profile type

Main	Help	About	Statistics » M	odule Statisti	cs : Local Tra	ffic » <mark>Sta</mark>	tus Sumn
Magenti Statisti	ics		🗱 👻 Traffic S	ummary 👻	DNS	-	Local Traff
Das	hboard	e					- (
Mod	ule Statistics	•	Display Options				5
Perf	ormance		Statistics Type		Profiles	Summary	
	onnanoo	_	Data Format		Status S Virtual S	Bummary Gervers	
iApps			Auto Refresh		Virtual A Policies	ddresses.	n
🌍 dns			Local Traffic Su	mmary	Profiles Profiles	Summary - Statistics	
Core Local T	raffic		Object Type	Total	Pools iRules		
-0-			Virtual Servers	1	Nodes		
🔊 Accele	ration		Pools	1	SNATS SNAT P	ools	
🚍 Device	Management		Nodes	3	SNAT TI NATS	ranslations	ة <mark>ا</mark>
		man	-	-	rsiste	ence Reco	when a surface

Global Profile Statistics			
Profile Type	Details		
HTTP	View		
HTTP Compression	View		
Web Acceleration	View		
RTSP	View		
Web Acceleration RTSP	View View		

- 6. You can get more detailed information on RamCache entries at the CLI level
 - (a) Log onto the CLI of your BIG-IP via SSH using the root account (user: root password: default).
 - (b) At the CLI go into tmsh at the (tmos)# prompt
 - (c) At the shell prompt enter show Itm profile ramcache www-opt-caching

HTTP Optimization - HTTP Compression Lab

- 1. Go to Local Traffic >> Profiles >> Service >> HTTP Compression or Acceleration >> Profiles >> Web Acceleration
 - (a) Create a new profile, www-compress, using the wan-optimized-compression default profile.
- 2. Open up your **www_vs** virtual server.
 - (a) At the HTTP Profile drop down menu make sure http is selected
 - (b) At the Web Acceleration drop-down menu select None
 - i. For the purpose of this lab we don't want caching interfering with our response headers
 - (c) At the **HTTP Compression** drop-down menu select the HTTP compression profile you just created
- 3. Now open your virtual server's web page and under **Content Examples on This Host** select the **HTTP Compress Example** and **Plaintext Compress Example** link
 - (a) Now off to the statistics on the sidebar. Under the Local Traffic drop-down menu select Profiles Summary
 - (b) Select the View link next to the HTTP Compression profile type

Cache Size (bytes)	179.1K		
Total Cached Items 11			
Total Evicted Items	0		
Cache Hits / Misses	Count		Size (bytes)
Cache Hits / Misses Hits	Count 31	909.9K	Size (bytes)
Cache Hits / Misses Hits Misses (Cacheable)	Count 31 7	909.9K 183.4K	Size (bytes)

- (c) On the web page under HTTP Request and Response Information select the Request and Response Headers link.
 - i. Notice you no longer see the Accept-Encoding header in the Request Headers Received at the Server section

Archive your work in a file called: Ib4_acceleration

3.2.5 Lab 5: SSL Offload and Security

In this Lab we will configure client-side SSL processing on the BIG-IP

Objective:

- · Create a self-signed certificate
- · Create a client SSL profile
- Modify your HTTP virtual server to use HTTPS
- · Add additional security to your HTTPS web server using the HTTP profile

We will create a self-signed certificate and key for a client SSL profile to attach to our virtual server

Creating a Self-signed certificate and key

1. Go to System >> Certificate Management >> Traffic Certificate Management >> SSL Certificate List and select Create

	Syste	em » C	ertificate Management : Tra	ffic Certificate Man	agement : SSL Certific	ate List				
	# -	Traffic	Certificate Management 👻	Device Certificate	Management 👻					
Î			,							
•	* Search Ir								mport C	
		Status	▲ Name		Contents	Key Security	Common Name	Organization	Expiration	Partition
			ca-bundle		Certificate Bundle				Mar 4, 2035 - Oct 6, 2046	Common
			default		RSA Certificate & Key	Normal	localhost.localdomain	MyCompany	May 26, 2028	Common
			f5-ca-bundle		RSA Certificate		Entrust Root Certificati	Entrust, Inc.	Dec 7, 2030	Common
			f5-irule		RSA Certificate		support.f5.com	F5 Networks	Aug 13, 2031	Common
			f5_api_com		RSA Key	Password				Common
	Archi	ve D	elete OCSP Cache Delet	te						

Note: The default key size is 2048. You can save SSL resources on the server-side by lowering this key size

eneral Properties		
Name		
ertificate Properties		
Issuer	Self \$	
Common Name		
Division		
Organization		
Locality		
State Or Province		
Country	United States	♦ US
E-mail Address		
Lifetime	365 days	
Subject Alternative Name		
ey Properties		
Кеу Туре	RSA \$	
Size	2048 \$ bits	

(a) Enter:

- i. Name: my-selfsigned-cert
- ii. Issuer: Self
- iii. Common Name: www.f5demo.com
- iv. Fill out the rest any way you would like

Creating SSL Client Profile

1. Go to Local Traffic >> Profiles >> SSL >> Client menu and select Create

Local Traffic » Profiles : SSL :	Client » New Client SSL Profile				
General Properties					
Name					
Parent Profile	Clientssl \$				
Configuration: Basic					
Certificate Key Chain	/Common/default.crt /Common/default.key Add Edit Delete				
OCSP Stapling					
Notify Certificate Status to Virtual Server					
Proxy SSL					
Proxy SSL Passthrough					

- (a) Under General Properties
 - i. **Name**: my_clientssl_profile
- (b) Under Configuration in the Certificate Key Chain section, select the Custom box and hit Add
 - i. In the Add SSL Certificate to Key Chain pop-up select:
 - A. Certificate: my-selfsigned-cert
 - B. Key: my-selfsigned-cert
 - ii. Select Add

Local Traffic » Profiles : SSL : Client » New Client SSL Profile					
General Properties					
Name	Add SSL Certificate to	o Key Chain			
Parent Profile	Certificate	default 🔻			
Davis	Key	default v			
Configuration: Basic	-		_		
	Chain	None •			
	Passphrase				
Certificate Key Chain	OCSP Stapling	None V			
Proxy SSL		Add Car	ncel		

(c) Hit Finished.

Building our New Secure Virtual Server

- 1. Go to Local Traffic >> Virtual Servers and hit the Create button or hit the "+" next to Virtual Servers
 - (a) Name: secure_vs
 - (b) Destination Address/Mask: 10.1.10.105
 - (c) Port: 443 or HTTPS
 - (d) SSL Profile (Client): my_clientssl_profile (the profile you just created)
 - (e) Source Address Translation: Auto Map (remember why we need this?)
 - (f) **Default Pool**: www_pool

- (g) Default all other settings. (Notice you did not require an HTTP profile)
- (h) Finish
- 2. Test our secure server. Go to you secure_vs at https://10.1.10.105
 - (a) If you want to watch member traffic, go to the www_pool and reset the statistics
 - (b) Browse to your secure virtual server
 - (c) What port did your pool members see traffic on?

Securing Web Applications with the HTTP profile

- 1. Let's begin by creating a custom HTTP profile
 - (a) Go to Local Traffic >> Profiles >> Services, select HTTP and create a new profile
 - (b) Under General Properties
 - i. Name: secure-my-website
 - (c) Under Settings:
 - i. Set the Fallback Host: http://10.1.1.252 (this will take you an internal site)
 - ii. Fallback on Error Codes: 404 (fallback site if a 404 error is received)
 - iii. Response Headers Allowed: Content-Type Set-Cookie Location
 - iv. Insert XForwarded For: Enabled (because we talked about it earlier)

Settings		Custom 🗆
Basic Auth Realm		
Fallback Host		
Fallback on Error Codes		
Request Header Erase		
Request Header Insert		
Response Headers Allowed		
Request Chunking	Preserve V	
Response Chunking	Selective V	
OneConnect Transformations	Enabled	
Redirect Rewrite	None 🔻	
Encrypt Cookies		
Cookie Encryption Passphrase		
Confirm Cookie Encryption Passphrase		
Insert X-Forwarded-For	Disabled V	
LWS Maximum Columns	80	

- (d) Attach your new HTTP Profile to your secure (HTTPS) virtual server
- 2. Browse to your secure virtual server.
 - (a) Do web pages appear normal?
 - (b) Now browse to a bad page
 - i. For example,
 - A. What is the result?
 - (c) Go to the **Request and Response Headers** page. You should see a sanitized server response at the bottom of the web page and the original client IP address
 - (d) You can compare the headers by accessing your HTTP virtual server at http://10.1.10.100
 - (e) While you are looking at the headers, check for the **X-Forwarded-For** header received by the server

Note: Even though the data is encrypted between your browser and the virtual server, the LTM can still modify the data (i.e. resource cloaking) because the data is unencrypted and decompressed within TMOS

Archive your work in a file called: lab5_security

3.2.6 Lab 6: BIG-IP Policies and iRules

When clients attempt to access your **secure_vs**, you don't want them to have to remember to type HTTPS before the web site, but you also don't want to open port 80 (HTTP) on your web servers as that is just asking for trouble. To avoid this issue, you will be creating an HTTP virtual server that will redirect HTTP to HTTPS and the **secure_vs**. Also, you will write an iRule and a BIG-IP policy that will retrieve images from a different pool of servers than the default pool attached to the virtual server. This will give you a simple comparison between the two methods. You will use a policy on the HTTP server and an iRule on the HTTPS virtual server.

Using the Built-in https_redirect iRule

- 1. While it would be easy to write your own redirect iRule, note that F5 has one prebuilt that you can use
 - (a) Example of simple redirect iRule:

```
when HTTP_REQUEST {
    HTTP::redirect https://[HTTP::host][HTTP::uri]
}
```

2. Go to Local Traffic >> iRules

(a) In the search box at the top of the list of iRules, type redirect and hit Search.

redir	ect Search Reset Se	arch			
	▲ Name	Verification	Certificate	Application	¢
	_sys_https_redirect	F5 Verified	f5-irule		С

- (b) Open the iRule and take a quick look. This is an F5 Verified and supported iRule.
- 3. Create your HTTP-to-HTTPS redirect virtual server.
 - (a) Go to Local Traffic >> Virtual Servers and create a new virtual server.
 - i. Name: redirect_to_secure_vs
 - ii. Destination: <same IP as secure_vs>
 - iii. Service Port: 80 (HTTP)
 - iv. Source Address Translation: None <you don't need this as this traffic is going nowhere>
 - v. iRule: _sys_https_redirect
 - vi. Hit Finished
 - A. WOW! That didn't go too far did it. You just got an error. If you are going to redirect the HTTP request, you need the HOST and URI information and that requires the HTTP protocol
 - (b) In the **Configuration** section make sure the default http profile is added to the virtual server
 - (c) HTTP Profile: http
 - (d) Select Finished
- 4. Test your policy by going to http://<ip address of your virtual>
 - (a) You should be redirected to the HTTPS virtual server
 - (b) As you can see, very small iRules can make a very big difference

Use a BIG-IP Policy to retrieve images from a different pool

- 1. Create a new pool named image_pool, use the http monitor for status, and add one member 10.1.20.14:80
- 2. First you will create your policy container and set your match strategy
 - (a) Try to do this using the instructions, but a screen shot of the policy is available in the **Appendix** at the end of the lab guide if you would like it.
- 3. Go to Local Traffic >> Policies >> Policy List and select Create
 - (a) **Policy_Name:** access_image_pool
 - (b) Strategy: Execute first matching rule
 - (c) Create Policy

Local Traffic » Policies : Policy List » New						
‡ +	Policies List	Strategy List		Statistics		
Genera	al Properties					
Policy Name			access_image_pool			
Description						
Strate	gy		Execute first	 matching rule 		
Cancel Create Policy						

- 4. Now you can create/view policy rules by selecting Create
 - (a) Name: get_jpegs
 - (b) In the box under Match all of the following conditions: select the + to the right of All Traffic
 - i. Use the drop-down menus to look at the HTTP URI and check if it ends_with an image type
 - ii. Look for JPEGs by adding jpg in the box under the any of box and selecting Add

(c) Under **Do the following when the traffic is** matched, build the following operation.

i. Forward Traffic to the pool named image_pool

(d) Save

Local Tra	affic » Policies :	: Polic	y List » /Com	imon/a	acces	s_imag	e_poo	bl				
🌣 👻 P	ublished Policy	Draf	t Policy									
General P	roperties											
Policy Na	ame		access_image	_pool								
Descripti	ion											
Strategy			Execute first	▼ ma	atching	rule						
Cancel	Save Draft 👻	Clone	•									
Dulas	Save Draft Poli	су										
Rules	Save and Publi	sh Pol	icy									Create
ID	N	ame							De	scriptio	n	
1	ge	et_jpeg	js									
Delete												

- 5. The policy is saved in **Draft** form and is not available until **Published**. To publish the policy:
 - (a) Select the Save Draft Policy drop-down menu and select Save and Publish Policy

- 6. Go to the **Resources** section of your **www_vs** virtual server and select **Managed** over the **Policies** box
 - (a) Move access_image_pool for the Available box to the Enabled box

Local Traffic » Virtual Servers : Virtual Server List » www_vs								
÷ -	Properties	Reso	urces	Statistics				
Resou	rce Management							
Polici	es		Enat	eled *	<<	/Commo access	Available n s_image_p	00l
Cance	el Finished							

- 7. Now test your change by browsing to http://10.1.10.100
 - (a) If your policy is working correctly, all of the images under F5 Platform List should be from NODE #4
 - (b) Other images are PNG images and have a different extension

Use an iRule to Retrieve Images From a Different Pool

- 1. Now you will use an iRule to perform the same image retrieval. Your image_pool is already created
- 2. Go to Local Traffic >> iRules and select Create
 - (a) **Name:** access_image_pool
 - (b) In the **Definition** section enter the following:

roperties	
Name	access_image_pool
	<pre>1 * when HTTP_REQUEST { 2 * if {([HTTP::uri] ends_with "jpg")} 3</pre>

- (c) This activity is not meant to be "cut and paste". We want you to get comfortable and familiar with typing iRules inside the GUI.
 - i. Try hovering the cursor over a command or event, such as, **HTTP_REQUEST** or **HTTP:uri**. You will see a definition of the item. For example:

Properties		
Name	access_image_pool	
	1 v when HTTP_REQUEST {	
	HTTP::uri	
	Returns or sets the URI part of the HTTP request. This command replaces the BIG-IP 4.X variable http_uri.	
	For the following URL: http://www.example.com:8080/main/index.jsp?user=test&login=check The URI is: /main/index.jsp?user=test&login=check	
	Note that in the HTTP_PROXY_REQUEST event, this command returns the complete proxy URI. This includes the scheme, host and port, and thus the result would be:	
	http://www.example.com:8080/main/index.jsp?user=test&login=check	-

- 3. Save your iRule and go to the Resources section of your secure_vs and select iRules >> Manage
 - (a) Move your access_image_pool iRule into the Enabled box
- 4. Test your secure_vs virtual by going to https://10.1.10.105
 - (a) The results should be the same as before
- 5. Extra Credit! Change both the policy and iRule to access the image_pool for png file types
 - (a) You should notice one is easier to update than the other

3.2.7 Lab 7: Support and Troubleshooting

In this lab, you will review your BIG-IP using iHealth and perform some basic troubleshooting commands Objective:

- · Collect a QKView and upload it to http://ihealth.f5.com and review the results
- Perform a TCPDump to watch traffic flow
- Obtain web page information via Curl

Archive the current configuration and perform a health check using a QKview

- 1. Obtain a QKView. Go to System >> Support
 - (a) Click New Support Snapshot

Note: If you have an iHealth account, you can choose to use the Generate and Upload QKview to iHealth option as long as your management port has Internet access. For this exercise, we will skip this.

- (b) From the drop-down, select Generate QKview
- (c) Select Download and download the QKView to your PC

Note: If you leave the **Support** page and return you will still the **Support Snapshot** screen. You CANNOT create another **QKView** or **TCP Dump** until the QKView is deleted.

2. Import the QKView into iHealth.

- (a) Go to http://ihealth.f5.com. If you don't have an account, now is the time to create one and then skip to the next section "Troubleshoot using TCPDump or Curl" because it will take time for your account set up.
- (b) Select the Upload button and upload the QKView file you download from your BIG-IP
- (c) Once the file is uploaded, you can click on the hostname to view you the heuristics
- (d) Note the Diagnostics. Go to **Diagnostics** >> Critical on the side-bar.
- (a) Example: The configuration contains user accounts with insecure passwords is because we are using default passwords
- (b) Select **Network** >> **Virtual Servers**, then click on the small white triangles to expand the view or go to **Pools**, then **Pool Members** to continue to expand the view.
- (c) This is a little more detailed than Local Traffic >> Network Map
- (a) If you want to see some interesting CLI commands, go to Commands >> Standard and expand tmsh then LTM and click on show /Itm virtual toward the bottom
- (b) Under **Files** >> **config** you can view the **bigip.conf** file and see the command lines you used for you build
 - i. All of the log files are here too
- (c) Feel free to just poke around

Troubleshoot using TCPDump or Curl.

- 1. Go to your www_vs (10.1.10.100) virtual server and set Source Address Translation to None.
 - (a) Now browse the web site. You will not be able to access it even though the status of the virtual is available.
 - i. Because the BIG-IP is not the server's default gateway of the servers their response goes around the BIG-IP.
 - (b) The web administrator tells you everything is fine as far as he can see and thinks the issue is with the BIG-IP, because they ALWAYS think the issue is with the BIG-IP
 - (c) You begin by debugging the client connections to the web servers through the BIG-IP using TCPDump
- 2. SSH to the management port of your BIG-IP.

Attention: Remember the BIG-IP is a full proxy. You will need two dumps and therefore two SSH windows for the client-side connection and the server-side connection.

- (a) First let's see if we are hitting the virtual server. At the Linux CLI prompt:
- (b) tcpdump –i <client vlan name> host –X –s128 10.1.10.100 and port 80
 - i. This is a little overkill, but a good example of syntax. We will only look at traffic headed for the virtual server. We will see the first 128 bytes (-s128) in ASCII (-X).
- (c) Go to your browser and attempt to access the virtual server. You should see something like this:

17:38:40.051122 IP **10.1.10.1**.43932 > 10.1.10.245.http: S 522853636:522853636(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK>

0x0000: 0ffe 0800 4500 0034 0a40 4000 4006 0699 E..4.@@.@...

0x0010: 0a80 0a01 0a80 0aeb ab9c 0050 1f2a 1d04P.*..

0x0020: 0000 0000 8002 2000 3d10 0000 0204 05b4=.

0x0030: 0103 0302 0101 0402

17:38:40.051169 IP 10.1.10.245.http > 10.1.10.1.43932: S 245310500:245310500(0) ack 522853637 win 4380 <mss 1460,sackOK,eol>

0x0000: 0ffe 0800 4500 0030 27ef 4000 ff06 29ed E..0'.@...).

0x0010: 0a80 0aeb 0a80 0a01 0050 ab9c 0e9f 2424P....\$\$

0x0020: 1f2a 1d05 7012 111c 2a0e 0000 0204 05b4 .*..p...*....

0x0030: 0402 0000

17:38:40.053644 IP 10.1.10.1.43932 > 10.1.10.244.http: . ack 1 win 64240

0x0000: 0ffe 0800 4500 0028 0a41 4000 4006 06a4 E..(.A@.@...

0x0010: 0a80 0a01 0a80 0aeb ab9c 0050 1f2a 1d05P.*..

0x0020: 0e9f 2425 5010 faf0 7018 0000 ...\$%P...p....

17:38:40.053648 IP 10.1.10.1.43932 > 10.1.10.245.http: P 1:416(415) ack 1 win 64240

0x0000: 0ffe 0800 4500 01c7 0a42 4000 4006 0504 E.... B@.@...

0x0010: 0a80 0a01 0a80 0aeb ab9c 0050 1f2a 1d05P.*..

0x0020: 0e9f 2425 5018 faf0 43c5 0000 4745 5420 ...\$%P...C... GET.

0x0030: 2f20 4854 5450 2f31 2e31 0d0a 486f 7374 /.HTTP/1.1..Host

0x0040: 3a20 3130 2e31 3238 2e31 302e 3233 350d **:.10.1.10.245**.

- (d) Well you are hitting the virtual server so let's look a little deeper and expand our dump. Your original client IP is in the first line of the dump 16:44:58.801250 IP 10.1.10.1.41536 > 10.128.10.245.https
- 3. In the second SSH window we will do an expanded tcpdump for the sake of interest
 - (a) tcpdump -i <server vlan name> -X -s128 host <client IP>
 - (b) Hit your virtual server again. As you can see, we are sending packers to the pool members. They just aren't responding so we can reasonably suspect it's a server issue.
- 4. It could be a port issue. Let's check to see if the server is responding on port 80. On the BIG-IP, in an SSH window:
 - (a) Do a <ctrl-c> to escape out of tcpdump, if you are still in it, and use curl to test the server
 - (b) curl -i <server ip>
 - (c) "-i" to dump the HTTP header information also

[root@bigip249:Active:Standalone] config # curl -i 10.1.20.11

HTTP/1.1 200 OK

Date: Sat, 26 Jul 2014 19:25:28 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.4.9-4ubuntu2.2

Vary: Accept-Encoding

Content-Length: 3819

Connection: close

Content-Type: text/html

<html>

<head>

<TITLE>Using virtual server 10.1.20.11 and pool member 10.1.20.11 (Node #1)</TITLE>

<meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />

- (d) The server is responding to the BIG-IP when directly connected, but not through the virtual server. Sounds like the server is routing around the BIG-IP, which means the BIG-IP is **not** the default gateway.
- 5. Turn SNAT Automap back on the www_vs virtual server

3.2.8 Lab 8: Device Service Clusters (DSC)

We want to familiarize you with the concept of Device and Traffic Groups as well as the building of Active-Standby, Active-Active BIG-IP pairs. While there is a wizard, for this lab, configuration will be done manually. The wizard will only build A/S HA groups. In order to build Active-Active and beyond a pair you will need to know the four steps to add a device object to a cluster.

Base Networking and HA VLAN

You will be creating a high availability cluster using the second BIG-IP (**bigip2**) in your lab, so let's prep our current BIG-IP and create a high availability VLAN.

- 1. On BiglpA.f5agility.com archive your configuration in case you need to revert
- 2. Go to **System >> Archives** and create a new archive.
- 3. You will be using your third interface (1.3) for Network Failover and ConfigSync. This requires certain ports to be open on the Self IP; TCP port 4353 for ConfigSync, TCP port 1026 for Network Failover and TCP port 6699 for the Master Control Program.
 - (a) Build a new untagged VLAN ha_vlan on interface 1.3
 - (b) Add a self-IP address to the VLAN, 192.168.20.1 net mask 255.255.255.0.
 - (c) Under Port Lockdown, select Allow Default, to open ports required for HA communications.
- 4. Go to https://10.1.1.246 which is BiglpB.f5agility.com and login.
- 5. Bigip102 has already been licensed and provision. You will need to set up the base networking.

Interface	Untagged VLAN	Self IP	Netmask
1.1	client_vlan	10.1.10.246	255.255.255.0
1.2	server_vlan	10.1.20.246	255.255.255.0
1.3	ha_vlan	192.168.20.2	255.255.255.0

6. Set Port Lockdown to Allow Default

- 7. Build the default gateway destination 0.0.0.0, mask 0.0.0.0, gateway ip address 10.1.10.1
- 8. What is the status your BIG-IPs? Check the upper left-hand corner next to the F5 ball.

Configure HA

- 1. **On each BIG-IP**, prior to building the Device Trust, it is recommended to renew the BIG-IP self-signed certificate with valid information and regenerate the local Device Trust certificate
- 2. Under System >> Certificate Management >> Device Certificate Management >> Device Certificate, select the Renew... button
 - (a) Common Name: <the Hostname of the BIG-IP in the upper left corner>
 - (b) Country: United States (or your country of preference)
 - (c) Lifetime: 3650
- 3. Lifetime is important. If your cert expires your HA setup will fail
- 4. Select Finished. Your browser will ask to exchange certs with the BIG-IP again
- 5. Under Device Management >> Device Trust >> Local Domain select Reset Device Trust...
- 6. In the Certificate Signing Authority select Generate New Self-Signed Authority and hit Update
- 7. **On each BIG-IP** configure the device object failover parameters the BIG-IP will send to other BIG-IPs that want to be a part of a sync-only or sync-failover group
 - (a) Under **Device Management >> Devices**, select the local BIG-IP. It will have the (Self) suffix.
 - (b) Under **Device Connectivity** on the top bar select:
 - (c) ConfigSync
 - (d) Use the Self IP address of the HA VLAN for your Local Address.
 - (e) Failover Network
- 8. In the Failover Unicast Configuration section select the Add button
- 9. Use the Self IP address the HA VLAN for your Address
- 10. Leave the Port at the default setting of 1026
- 11. Note: Multicast is for Viprion chassis' only
- 12. Mirroring
- 13. Primary Local Mirror Address: use the Self IP address of the HA VLAN for your
- 14. Secondary Local Mirror Address: None
- 15. On **bigip01.f5agility.com** build the Device Trust.
 - (a) Under Device Management >> Device Trust >> Device Trust Members and select Add to add other BIG-IP(s) you will trust.
 - (b) Device IP Address: < management IP address of the BIG-IP to add>
- 16. You could use any Self IP if the out-of-band management interface is not configured.
 - (a) Enter the Administrator Username and Password of the BIG-IP you are trusting
 - (b) Select Retrieve Device Information
- 17. The certificate information and name from the other BIG-IP should appear
 - (a) Select Device Certificate Matches to proceed
 - (b) Select Add Device

18. On each BIG-IP check the other BIG-IP in the **Device Trust Members** list. Is all the information there?

Peer Authority Devices			Add
✓ ♦ Name	Hostname	Serial Number	MAC Address
bigip248.f5demo.com	bigip248.f5demo.com	564dc0a6-7b3a-44b9-fb437ae340a6	0:c:29:e3:40:a6

19. If some information is missing delete the trust and try again

Peer Authority Devices				
	Name	≑ Hostname	Serial Number	MAC Address
	bigip249.f5demo.com			

- 20. What are the statuses of your BIG-IPs now?
- 21. They should be **In Sync**. But wait! Although they show in sync, only a **Sync-Only** group was created. We now need to create a **Sync-Failover** group to facilitate failover.
- 22. On BiglpA.f5agility.com create a new Sync-Failover device group
 - (a) Under Device Management >> Device Group create a new device group
 - (b) **Name:** my-device-group
 - (c) Group Type: Sync-Failover
 - (d) Add the members of the group to the Includes box
 - (e) Check the Network Failover setting for the group
- 23. Check Device Groups on each BIG-IP
- 24. Did you have to create the Device Group on the other BIG-IP?
- 25. Is the full configuration synchronized yet? (No! Only the Device Group is sync'd)
- 26. What is your sync status?
- 27. It should be Awaiting Initial Sync
 - (a) Click on the sync status or go to **Device Management >> Overview** (or click on **Awaiting Initial** Sync) of the BIG-IP with the **good/current** configuration
 - (b) Click the device with the configuration you want to synchronize. Sync Options should appear.
 - (c) Synchronize to Group. It could take up to 30 seconds for synchronization to complete.

Note: During the **Awaiting Initial Sync** phase either BIG-IP can perform the synchronization and the other BIG-IP will be overwritten.

- 1. What are the statuses of your BIG-IPs? Do you have an active-standby pair?
- 2. Are the configurations the same?
- 3. Now that you have created your HA environment, HA selections will show up for SNAT addresses (not tied to your base network), persistence profiles and connection mirroring on virtual servers.
 - (a) Go to your Active BIG-IP
 - (b) Go to your persistence profile my-src-persistence and check the Mirror Persistence box
 - (c) Go to your www_vs virtual server and set the Default Persistence Profile to my-srcpersistence

- (d) Synchronize your changes. Did the changes sync?
- (e) On each BIG-IP go to **Module Statistics > Local Traffic** and bring up the persistence record statistics
- (f) Go to the home page of your www_vs web service (http://10.1.10.100). Refresh a few times.
- (g) Check the persistence records on each of your BIG-IPs, you should see the records are mirrored on each device
- 4. Go to **Device Management >> Traffic Groups**. As you can see the default traffic group "trafficgroup-1" already exists.
 - (a) Select traffic-group-1. Check out the page information and then select Force to Standby.
 - (b) What are the statuses of your BIG-IPs? Go to your web page. What is the client IP?
 - (c) Go to your self-IP addresses. What traffic group are they in? What does it mean?
 - (d) Archive your work.

3.2.9 Bonus Lab – Traffic groups, iApps and Active-Active

If you have time, this is a bonus lab. Here you will create a new traffic group. You will use iApps to create a new HTTP application that reside in that address group and you will create a floating IP address that will be used as the default gateway that also resides in that traffic group.

Building a new traffic group and floating IP.

- 1. On your Active BIG-IP, go to Device Management >> Traffic Groups and hit Create
 - (a) Use the f5.http template, which was designed for general web services
 - i. Name: iapp_tg
 - ii. Take the defaults for the rest.
- 2. Add a floating Self-IP to the server_vlan. Go to Network >> Self IP
 - (a) Name: server_gateway
 - (b) **IP Address:** 10.1.20.240
 - (c) Netmask: 255.255.255.0
 - (d) VLAN/Tunnel: server_vlan
 - (e) Traffic Group: iapp_tg (floating)

Building an HTTP application using an iApp template.

- 1. Go to iApp >> Application Services and hit Create
 - (a) Use the f5.http template, which was designed for general web services
 - i. Set the Template Selection to Advanced
 - ii. **Name**: my_new_iapp
 - iii. **Traffic Group:** iapp_tg (floating)
 - A. You will have to uncheck the Inherit traffic group from current partition / path.

- iv. Under Template Options
 - A. Select the Advanced Configure advanced options for the configuration mode
- v. Under the Network tab
 - A. How have you configured routing on your web servers? Servers have a route to the clients through the BIG-IP system
 - B. In other words, the BIG-IP is the default gateway for the servers
 - C. Otherwise the template would use SNAT by default
- vi. Under Virtual Server and Pools
 - A. Your virtual server IP is 10.1.10.110
 - B. Your hostname will be *www.f5agility.com <http://www.f5agility.com>* because you have to put one in.
 - C. Create a new pool with the members 10.1.20.14:80 and 10.1.20.15:80
 - D. If you hit add after the last pool member and have a new row, you will need to delete the row prior to finishing
- vii. Hit Finished at the bottom of the page
- 2. Go to iApp >> Application Services and select the new application you created
 - (a) Select Components from the top bar
 - i. Here you will see all the configuration items created by the iApp
 - ii. Do you see anything created that you weren't asked about?
- 3. Remember the concept of strictness? Let's test that out
 - (a) Go to Local Traffic >> Pools >> Pool List
 - i. Select the pool created by your iApp: my_new_iapp_pool
 - ii. Attempt to add 10.15.11.13:80 to your my_new_iapp_pool

A. Did it fail?

- (b) Go to your iApp and select Reconfigure from the top bar
 - i. Now attempt to add your new pool member
 - ii. You can check the Components tab to verify your success

SYNCHRONIZE YOUR CHANGES

Active-Active Setup

- 1. Now, let's make our sync-failover group active-active. On the Active BIG-IP:
 - (a) Go to Device Management >> Traffic Groups
 - i. Go to you iapp_tg traffic group.
 - ii. Under Advanced Setup Options
 - A. You are going to set up **iapp_tg** to prefer to run on **bigip02.f5agility.com** and auto failback to **bigip02** if **bigip02** should go down and come back up later.
 - B. Is this normally a good idea?

- iii. Failover Method: HA Order
- iv. Auto Failback: <checked>
- v. Failover Order: bigip102.f5agility.com then bigip01.f5agility.com
- vi. Ensure you synchronized the change to the other BIG-IP
- 2. If the traffic group is active on the wrong BIG-IP initially you will have to do a Force to Standby on the traffic group to make it active on the BIG-IP you want it on by default
 - (a) What is the ONLINE status of each of your BIG-IPs?
 - (b) Reboot the BIG-IP with your second traffic group on it. Watch to see if the application becomes active on the other BIG-IP during the reboot and if it falls back to the Default Device once the BIG-IP has come back up.
 - (c) You can verify this by checking your traffic groups or going to the web server and looking at the client IP

Class 4: Troubleshoot with tcpdump and Wireshark

Welcome to the troubleshoot with tcpdump and Wireshark documentation.

4.1 F5 tcpdump and Wireshark

This class covers the following topics:

- tcpdump switches and filters
- F5 specific tcpdump commands
- F5 Wireshark Plugin
- Using the F5 Wireshark Plugin
- SSL decrypt packet capture

We will be using a jumpbox to connect to the lab environment. Click on the lab link given out during class and select the RDP option to connect to the lab box.

The credentials will be the following:

user: f5student

password: f5DEMOs4u

4.1.1 tcpdump Switches

The tcpdump command has several switches with different purposes. The following are some of the most commonly used.

You can run these commands from the Jumpbox to see the output in our lab environment or you can just read through the information, it is up to you. To launch the SSH connection to the BIG-IP double click on the Putty shortcut on the desktop. Then connect to the BIGIP01 instance. The credentials are:

user: root password: default

1. tcpdump -D

To list the available interfaces for packet capture use tcpdump -D

The 'any' interface will be taken by TMM and made into the interface '0.0'

4

2. tcpdump -i

To capture traffic on a specific interface use tcpdump -i <interface name>. i.e. 'tcpdump -i 0.0'

When using 0.0 for the interface on a capture make sure to use a capture filter or you will get too much information and may impact performance on the F5.

[root@bigipA:Active:Standalone] config # tcpdump -i external tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on external, link-type EN10MB (Ethernet), capture size 65535 bytes

3. tcpdump -n

Use tcpdump -n to disable name resolution of host names

4. tcpdump -nn

Use tcpdump -nn to disable name resolution of both host names and port names

5. tcpdump -X

Use tcpdump -X to show output including ASCII and hex. This will making reading screen output easier.

[root@bigipA:Active:Standalone] config # tcpdump -X -nni external host 10.1.10.55
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on external, link-type EN10MB (Ethernet), capture size 65535 bytes
09:38:32.085972 IP 10.1.10.199.49234 > 10.1.10.55.443: Flags [S], seq 2106152363, win 8192, options [mss 1460,nop,wscale 2,nop,nop,sackOK], length 0 i
n slot1/tmm1 lis=
0x0000: 4500 0034 0256 4000 8006 cf6e 0a01 0ac7 E4.V@n
0x0010: 0a01 0a37 c052 01bb 7d89 55ab 0000 00007.R}.U
0x0020: 8002 2000 90d4 0000 0204 05b4 0103 0302
0×0030: 0101 0402 0105 0101 0001 00
09:30:32.086122 IP 10.1.10.199.49235 > 10.1.10.55.443: Flags [S], seq 1181596894, win 8192, options [mss 1460,nop,wscale 2,nop,nop,sackOK], length 0 i
n slot1/tmm0 lis=
0x0000: 4500 0034 0257 4000 8006 cf6d 0a01 0ac7 E4.₩@m
0x0010: 0a01 0a37 c053 01bb 466d bcde 0000 00007.SFm
0×0020: 8002 2000 60bc 0000 0204 05b4 0103 0302`
0×0030: 0101 0402 0105 0101 0000 00
09:30:32.086248 IP 10.1.10.55.443 > 10.1.10.199.49235: Flags [S.], seg 1497446718, ack 1181596895, win 4380, options [mss 1460.sackOK.eol], length 0 o
ut slot1/tmm0 lis=/Common/lorax portal access vs
0x0000: 4500 0030 ede8 4000 ff06 64df 0a01 0a37 E.O@d7
0x0010: 0a01 0ac7 01bb c053 5941 393e 466d bcdfSYA9>Fm
0×0020: 7012 111c f219 0000 0204 0554 0402 0000 p
0x0030: 0123 0100 0000 1e2f 436f 6d6d 6f6e 2f6c #/Common/l
8x8049: 6f72 6178 5f78 6f72 7461 6c5f 6163 6365 orax portal acce
8×8050: 7373 5f76 73 55 v5

6. tcpdump -w

Use tcpdump -w to write the packet capture to a capture file that is readable in an application such as Wireshark.

7. tcpdump -s

Use 'tcpdump -s0' to capture the full data packet. The number following the 's' indicates the number of bits to capture of each packet. 0 indicates all.
4.1.2 tcpdump Filters

This section is for informative value and nothing will be done in the lab environment.

When running tcpdump capture from the F5 you should always use a filter to limit the volume of traffic you will gather.

1. Host Filters

tcpdump host 192.168.2.5 This will filter the packet capture to only gather packets going to or coming from the host 192.168.2.5.

tcpdump src host 192.168.2.5 This will filter the packet capture to only gather packets coming from 192.168.2.5.

tcpdump dst host 192.168.2.5 This will filter the packet capture to only gather packets going to 192.168.2.5.

2. Port Filters

tcpdump port 443 This will filter the packet capture to only gather packets with a source or destination of port 443.

tcpdump src port 1055 This will capture traffic being sourced from port 1055.

tcpdump dst port 443 This will capture traffic destined for port 443.

4.1.3 F5 Specific tcpdump Switches

This section is for informative value and nothing will be done in the lab environment.

F5 has added some F5 specific switches to the tcpdump utility on the F5. These switches give additional information on your packet captures. These switches are places after the interface option in the command line as follows:

- 1. :n gives low details
 - (a) for example: tcpdump -nni 0.0:n -s0 -w/var/tmp/capture.pcap
 - (b) This will give basic information such as whether the captured traffic is ingress or egress to the F5. It will also give the TMM instance the traffic is on as well as the Chassis slot processing the traffic. This option also lists the virtual server name that processes the traffic.

	Stream		Delta	Time	VLAN	L2 Src	Source				
276	56	133	0.000295	14:00:55.635257	10	52:54:00:28:6d:a5	10.1.10.199				
276	57	133	0.000004	14:00:55.635261	10	52:54:00:28:6d:a5	10.1.10.199				
276	58	133	0.000010	14:00:55.635271	10	52:54:00:65:f1:6c	10.1.10.35				
270		1 7 7	0 000010	14.00.55 (35303	10	FD. F4.00.0F.41.0.	10 1 10 25				
▼ F5 Ethernet trailer											
	F5 Low	Deta:	ils								
	Ingr	ess:	True (IN)								
	Slot	(1-b	ased): 1								
	TMM	(0-ba	ised): 1								
	VIP:	/Com	mon/dvwa_v	irtual_35							

- 2. :nn gives medium details
 - (a) for example: tcpdump -nni 0.0:nn -s0 -w/var/tmp/capture.pcap
 - (b) This option will give all the low detail information plus the following:
 - Flow ID number

- Peer Flow ID number
- TCP RST cause
- Flow type
- HA unit
- Ingress Slot
- · Ingress port
- Priority

No.	Str	eam	Delta	Time	VLAN	L2 Src	Source					
	2773	136	-0.000001	14:01:16.879800	10	52:54:00:28:6d:a5	10.1.10.					
	2774	136	0.000161	14:01:16.879961	10	52:54:00:65:f1:6c	10.1.10.					
	2775	135	-0.000003	14:01:16.879958	10	52:54:00:65:f1:6c	10.1.10.					
	2770	107	0 107001	14-01-17 047040	10	ED.E4.00.00.04E	10 1 10 1					
Ŧ	F5 Ether	net trail	ler									
	▶ F5 Low Details											
	F5 Med	ium Deta	ils									
	Flo	w ID: 0×0	00002ae866b	f6640								
	Pee	Peer ID: 0x00000000000000										
	Connflow Flags High Bits: 0x00000000											
	Connflow Flags: 0x04000020											
	Flo	w Type: 0	0x46									

Ingress Port: 0 Priority: 0 ▶ RST cause: [22710cf:2046] No local listener

HA Unit: 0x01 Ingress Slot: 0

3. :nnn gives high details

(a) for example: tcpdump -nni 0.0:nnn -s0 -w/var/tmp/capture.pcap

- (b) This option will give all the low and medium details plus the following
 - Peer IP Protocol
 - Peer VLAN
 - Peer Remote address
 - · Peer local address
 - · Peer remote port
 - Peer local port

No.	St	tream Delta	Time	VLAN	L2 Src	Source	Src Port	Dst port	Destination	L2 Dst	Protocol
	72	2 0.000007	16:05:26.249479	10	52:54:00:65:f1:6c	10.1.10.35	443	49177	10.1.10.199	52:54:00:28:6d:a5	TCP
	73	2 0.000016	16:05:26.249495	10	52:54:00:65:f1:6c	10.1.10.35	443	49177	10.1.10.199	52:54:00:28:6d:a5	TCP
	74	3 0.000007	16:05:26.249502	20	52:54:00:65:f1:6c	10.1.20.240	38416	80	10.1.20.17	52:54:00:e8:f7:b4	ТСР
	Eramo 74	7 0 000570	16.05.06 050001	c) 16	52.54.00.00.47.64	10 1 20 17	00	20416	10 1 20 240	53.54.00.65.41.64	TCD
1	Ethornot	TI Sree Dee	ltoku 65.fl.6c /	57, 10	AQUES CAPTURED ()	Depltaku off	h4 (53.0	4.00.00	(f7, b4)		
	202 10 V	istual LAN D		D. 20	00.05.11.00/, DSC.	Reallero_eo.i/.	D4 (J2	14.00.00	. 17.04)		
2	Totornot	Protocol Vor	$\begin{array}{c} RI: \ 0, \ CFI: \ 0, \ I \\ cion \ 4 Src: \ 10 \end{array}$	1 20 2	40 Dc++ 10 1 20 1	,					
	Transmis	cion Control	Protocol Src Po	rt. 20.2	40, DSC: 10.1.20.17	Soar 519 Ackr	090 1.07				
5	E5 Ethor	net trailer	FIOLOCOL, SIC FO	11. 30	1410, DSt Fuit. 00,	Jeq. 310, Ack.	909, Lei	1. 0			
×.											
	V FS LO	w Decarts									
	ring Cla	ress: raise (1								
	510	(1-based):	1								
	IMM	1 (0-based): 0									
	VIP	: /Common/dvw	a_virtual_35								
	▶ F5 Mee	dium Details									
	▼ F5 Hi	gh Details									
	Pee	er IP Protocol	: 6								
	Pee	er VLAN: 10									
	Pee	er remote addr	ess: 10.1.10.199								
	Pee	er remote addr	ess: ::ffff:10.1	.10.19	99						
	Pee	er local addre	ss: 10.1.10.35								
	Pee	er local addre	ss: ::ffff:10.1.	10.35							
	Pee	er remote port	: 49177								
	Pee	er local port:	443								

4.1.4 Install the F5 Wireshark Plugin

Wireshark version 2.2.14 is installed on the jumpbox.

You can download the F5 Wireshark plugin from devcentral.f5.com here: https:// devcentral.f5.com/d/wireshark-plugin?lc=1. In the lab the plugin is already downloaded to /home/f5student/Downloads/wireshark/.

- 1. Start Wireshark by double clicking the shortcut on the desktop.
- 2. Click on Help and then About Wireshark.
- 3. Click on the plugins tab and check to see what directory the plugins are installed to.
- 4. Open the plugin directory in file explorer.
- 5. Copy the F5 wireshark plugin that has been copied to /home/f5student/Downloads/wireshark/
 - (a) The jumpbox client is Ubuntu 64 bit.
 - (b) Open the Linux64-2.2.0 folder and copy the f5ethtrailer.so to the plugin directory determined in step 3.
 - (c) In order to move the file you will need to elevate permissions. The easiest way to do this is from the command line terminal. Use the command:
- 6. Depending on your OS and Wireshark version, you will need the correct plugin files from the correct folder.
- 7. Shutdwon Wireshark and restart it.
- 8. Click on Help and then About Wireshark.
- 9. Check the plugins tab again and make sure the F5 plugin is installed.

•			📕 About Wireshark
W	ireshark A	uthors	Folders Plugins Keyboard Shortcuts License
Name	Version	Туре	Path
docsis.so	0.0.5	dissector	r /Applications/Wireshark.appPlugIns/wireshark/docsis.so
ethercat.so	0.1.1	dissector	r /Applications/Wireshark.appuglns/wireshark/ethercat.so
f5ethtrailer.so	0.1.11	dissector	r /Applications/Wireshark.app/ns/wireshark/f5ethtrailer.so
gryphon.so	0.0.4	dissector	r /Applications/Wireshark.apuglns/wireshark/gryphon.so
irda.so	0.0.6	dissector	r /Applications/Wireshark.apps/PlugIns/wireshark/irda.so
m2m.so	1.1.0	dissector	r /Applications/Wireshark.aps/PlugIns/wireshark/m2m.so
mate.so	1.0.0a	dissector	r /Applications/Wireshark.apps/PlugIns/wireshark/mate.so
opcua.so	1.1.0	dissector	r /Applications/Wireshark.apPlugIns/wireshark/opcua.so
profinet.so	0.2.4	dissector	r /Applications/Wireshark.appuglns/wireshark/profinet.so
stats tree.so	0.0.1	tap	/Applications/Wireshark.appIns/wireshark/stats tree.so

4.1.5 Taking a Capture from the F5

Let's take the information we have gathered so far and take a packet capture from the F5.

- 1. Start Putty and launch the bigip01 SSH session.
- 2. Login as root user. Password is 'default'.
- 3. List the destination address of the virtual on the F5 using the following command:

tmsh list ltm virtual hackazon.f5demo.com.app/hackazon.f5demo.com_vs destination

- 4. Now take the destination address and compose a tcpdump command to track the traffic coming to this virtual server:
- tcpdump -nni 0.0:nnn -s0 -w/var/tmp/hackazon.pcap host 10.1.10.201
- 5. After starting the capture, start Chrome and click on the Hackazon bookmark. Browse around the site following a couple links. Next go to the address bar and type in: "https://hackazon.f5demo.com:8080". Then stop the capture in the putty session by using 'Ctrl+c'.
- 6. Open a terminal screen on the Ubuntu jumpbox. Change Directory to the Downloads folder.
- 7. Run the following command:

```
sudo scp root@10.1.1.245:/var/tmp/hackazon.pcap ./
```

- 8. You will be prompted to save the SSH keys. Type yes and hit enter, then enter the root password for the F5.
- 9. Now open Wireshark and open the hackazon.pcap file you just copied from the F5.
- 10. If you run into issues copying the hackazon.pcap file to the jumpbox you can use the already created file in the Downloads folder hackazon2.pcap.

4.1.6 Configuring/Using Wireshark F5 Plugin

We will start with what kind of unique information is gathered through the plugin and using tcpdump on the F5.

1. Start by selecting packet 1 in Wireshark.

 Notice in the middle section of wireshark you will see the tcpdump command being run. You will also see the version of the F5 code, the F5 hostname, and the Platform ID number (in this case Z100 for Virtual Edition).

1											
	ДАр	oly a display filter	r <ctrl-></ctrl->				Expression +	- 2			
	No.	Time	Source	Destination	Protocol	Length Info		A 21			
З		1 0.000000	00:00:00_00:00:00	00:00:00_00:00:00	FILEINFO	177 tcpdump -nni 0.0:nnn -	s0 -w/var/tmp/hac				
I		2 4.542297	10.1.10.51	10.1.10.201	TCP	208 IN s1/tmm1 : 58238 →	443 [FIN, ACK] Se	P(
q		3 4.542303	10.1.10.51	10.1.10.201	TCP	208 IN s1/tmm1 : 58242 →	443 [FIN, ACK] Se	T			
1	4		10 1 10 001	10 1 10 51	TOD	000 OUT 1/0 1 1/0 F0		P			
١	Fra Tcp	Frame 1: 177 bytes on wire (1416 bits), 177 bytes captured (1416 bits) Tcpdump command line: tcpdump -nni 0.0:nnn -s0 -w/var/tmp/hackazon.pcap host 10.1.10.201									
	Pla Hos	tform version: tname: bigip01	13.1.0.3 0.0.5 f5demo.com					20			
t	Pla	tform: Z100						2			
5	Pla	tform product:	BIG-IP					20			

3. Now we will use a wireshark display filter to see a specific request. Add 'tcp.port == 80' in the display filter field and hit enter.

	1								ha	ckazo	on2.p	ocap										•			3
F	ile	<u>E</u> dit	<u>V</u> iew	<u>G</u> o	<u>C</u> apture	<u>A</u> nalyze	<u>S</u> tatist	ics Tele	phony	Wire	less	Tools	<u>H</u> elp												
4			6		0203 0110 0313	8	9	(ب		<u></u>	J		Ð	Θ	9	• •									
	tc	p.port	==80																X		• E	pressio	n	+	
N	0.	Т	ime		Source			Desti	nation				rotocol	Len	igth In	fo									
		9 6	.94072	4	10.1.1	0.201		10.1	.10.51				CP		218 0	JT s	s1/tmm2	2 :	80 → 5	5494	[SYN	ACK1	Seq		
		17 6	.94303:	1	10.1.1	0.51		10.1	.10.20	1			CP		214 II	N s	s1/tmm2	2 :	55494	→ 80	ACK	Seq=1	Ac		
R	-	53 7	.01534	8	10.1.1	0.51		10.1	.10.20	1			TTP		675 II	V s	s1/tmm2	2 :	GET /	HTTP/	1.1				
-		54 7	.01538	6	10.1.1	0.201		10.1	.10.51				TTP		334 01	JT s	s1/tmm2	2 :	HTTP/1	L.0 30	2 Foi	und			
		55 7	.01669	2	10.1.1	0.51		10.1	.10.20:	1			CP		214 II	N s	s1/tmm2	2 :	55494	→ 80	[ACK]	Seq=4	62		-
4		4740 0	4 0500	~ ~	40.4.4	0 54		40.4	40.000				00		044 1	u -	- A / b	• •	FF 40.4	- 00	CCTN.	1003	Î.		
	Frame 53: 675 bytes on wire (5400 bits), 675 bytes captured (5400 bits) Ethernet II, Src: Oracle_1a:a5:83 (2c:c2:60:1a:a5:83), Dst: Oracle_5f:e5:b2 (2c:c2:60:5f:e5:b2) 802.10 Virtual LAN, PRI: 0, CFI: 0, 10: 4094 Internet Protocol Version 4, Src: 10.1.10.51, Dst: 10.1.10.201 Transmission Control Protocol, Src Port: 55494, Dst Port: 80, Seq: 1, Ack: 1, Len: 461 Hypertext Transfer Protocol F5 Ethernet trailer																								

- 4. In the capture above packet 53 shows the GET requests to the website. In your capture it will be a different packet number but you can see in the Info area that it is a GET request.
- 5. Right click on the GET request and go to protocol preferences, and then populate fields for other dissectors. This makes it so when applying a display filter it applies to both the client and server sides of the F5 connection. We will cover this in the F5 High Details section.

Mark/Unmark Packet	Ctrl+M	
Ignore/Unignore Packet	Ctrl+D	
Set/Unset Time Reference	Ctrl+T	
Time Shift	Ctrl+Shift+T	
Packet Comment	Ctrl+Alt+C	
Edit Resolved Name		
Apply as Filter	+	
Prepare a Filter	+	
Conversation Filter	•	
Colorize Conversation	•	
SCTP	+	
Follow	•	
Сору	+	
Protocol Preferences	•	Open F5ETHTRAILER Protocol preferences
Decode As		Populate fields for other dissectors
Show Packet in New Window		 Perform analysis of trailer data
		Summary display in info column
		Brief in/out characters:
		Only display slot information for platforms:
		enty aspray size an office of place of the
		✓ Add RST cause string to info

4.1.7 Follow F5 Conversation

1. Clear the display filter and hit enter. Right Click on one of the packets in the capture and select Conversation Filter and then F5 TCP. This will automatically develop a display filter to show the client and server sides of a conversation going through the BIG-IP device.

13 2.660547 10.128	10 100	10 128 10	200 4	ттр	596 IN	s1/tmm0	: GE
14 2 661381 10 12	Mark/U	Inmark Packet	Ctrl+M	2	297 OUT	s1/tmm0	• H
ame 13: 596 bytes on wir	Ignore/	Unignore Packet	Ctrl+D	bit	ts)		
hernet II, Src: Oracle_€	Set/Un	set Time Reference	Ctrl+T	_40	5:8d:06 (2c:	:c2:60:40	5:8d:
2.1Q Virtual LAN, PRI: (Time S	hift	Ctrl+Shift+T				
ternet Protocol Version	Dealers	C	Cerl - Ale - C	10	Onles 1 La	410	
ansmission Control Proto	Packet	Comment	Ctrl+Alt+C	1,	, ACK: I, L(en: 419	
Ethernet trailer	Edit Re:	solved Name					
F5 Low Details F5 Medium Details Flow ID: 0x000056000	Apply a Prepare	as Filter e a Filter		•			
Peer ID: 0×000000000	Conver	sation Filter		•	ENIP IO		
Connflow Flags High	Coloriz	e Conversation		•	ENTP Explicit		
Conntiow Flags: 0x00	SCTP				Ethornot		
HA Unit: 0×00	Follow				Ethemet		
Ingress Slot: 0	10110				IPV4		
Ingress Port: 0	Сору			•	IPv6		
Priority: 0	D .	10 6			тср		
F5 High Details	Protoco	of Preferences			UDP		
	Decode	2 As			F5 TCP		
	Show P	acket in New Wind	ow		F5 UDP		
					F5 IP		
					PN-CPA		
					DN-TO AR		
					PN-TO AR		
				_	PIN-IU AK (W	ith data)	

4.1.8 F5 Low Details

- 1. Apply a new display filter of 'tcp.port == 80' to the capture.
- 2. Select the packet with the GET request in the info field.
- 3. In the middle section Expand F5 Ethernet Trailer.
- 4. Then expand F5 Low Details.

	6 4.751554	10.128.10.100	10.128.10.200	TCP	177 50151 → 80 [ACK] Seq=1 Ack=1 Win=64240 Len=0	_						
-,	7 4.752109	10.128.10.100	10.128.10.200	HTTP	626 IN s1/tmm3 : GET / HTTP/1.1							
4	8 4.752349	10.128.10.200	10.128.10.100	HTTP	297 OUT s1/tmm3 : HTTP/1.0 302 Found							
	47 4,979067	10.128.10.100	10.128.10.200	TCP	177 50151 → 80 [ACK] Seo=450 Ack=121 Win=64120 Len=0							
Þ	Frame 7: 626 bytes	on wire (5008 bits), 626 bytes captured	(5008 bits)							
\triangleright	Ethernet II, Src:	Oracle_6e:41:20 (2c	:c2:60:6e:41:20), Dst:	Oracle_46	:8d:06 (2c:c2:60:46:8d:06)							
\triangleright	802.1Q Virtual LAN	, PRI: 0, CFI: 0, I	D: 4094									
Þ	Internet Protocol	Internet Protocol Version 4, Src: 10.128.10.100, Dst: 10.128.10.200										
\triangleright	Transmission Contr	ol Protocol, Src Po	rt: 50151, Dst Port: 8	0, Seq: 1,	Ack: 1, Len: 449							
Þ	Hypertext Transfer	Protocol										
⊿	F5 Ethernet traile	r										
	▲ F5 Low Details											
	Ingress: Tru	e (IN)										
	Slot (1-base	d): 1										
	TMM (0-based): 3										
	VIP: /Common	/hackazon.f5demo.com	m_http_vs									
	♭ F5 Medium Detai	ls										
	▷ F5 High Details											

- 5. Notice the Ingress value is True (IN). This is from the perspective of the F5. The traffic is inbound to the F5.
- 6. The low details also gives the Slot value (always be 1 for an appliance). The TMM number in the image is 3.
- 7. The most important value here is the VIP. In this case it is the /Common/hackazon.f5demo.com_http_vs. Notice this is the port 80 VIP for this particular destination IP. The VIP is configured with a redirect to SSL.
- 8. The next packet in the capture is a HTTP 302 redirect to the SSL vip.

4.1.9 F5 Medium Details

1. Now expand the F5 Medium Details.

5 4.748757	10.128.10.200	10.128.10.100	TCP	185 OUT s1/tmm3 : 80 → 50151 [SYN, ACK] Seq=0 Ack=1 Win=4380 Len=0 MSS=1460 SACK_PERM=1
6 4.751554	10.128.10.100	10.128.10.200	TCP	177 50151 → 80 [ACK] Seq=1 Ack=1 Win=64240 Len=0
7 4.752109	10.128.10.100	10.128.10.200	HTTP	626 IN s1/tmm3 : GET / HTTP/1.1
8 4.752349	10.128.10.200	10.128.10.100	HTTP	297 OUT s1/tmm3 : HTTP/1.0 302 Found
9 4.763068	10.128.10.100	10.128.10.200	TCP	154 IN s1/tmm2 : 50153 → 443 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
Frame 7: 626 bytes	s on wire (5008 bits	s), 626 bytes captured (5008 bits	:)
Ethernet II, Src:	Oracle_6e:41:20 (20	:c2:60:6e:41:20), Dst:	Oracle 46	5:8d:06 (2c:c2:60:46:8d:06)
802.10 Virtual LAM	I, PRI: 0, CFI: 0, 1	ID: 4094		
Internet Protocol	Version 4, Src: 10.	128.10.100, Dst: 10.128	.10.200	
Transmission Contr	rol Protocol, Src Po	ort: 50151, Dst Port: 80	, Seq: 1,	Ack: 1, Len: 449
Hypertext Transfer	• Protocol			
F5 Ethernet traile	er			
▷ F5 Low Details				
⊿ F5 Medium Detai	ls			
Flow ID: 0×0	0005601d6849800			
Peer ID: 0×0	000000000000000000000000000000000000000			
Connflow Fla	gs High Bits: 0×000	00000		
Connflow Fla	gs: 0×00000024			
Flow Type: 0	×40			
HA Unit: 0×0	0			
Ingress Slot	: 0			
Ingress Port	: 0			
Priority: 0				
▷ F5 High Details	;			

2. A majority of the information in the Medium Details will be used by F5 support in analyzing packet flow. The important parts to notice are the Flow ID, Peer ID, and RST Cause.

- 3. The Flow ID and Peer ID. These are unique identifiers for the two flows of the connection. They are only unique within a specific slot and tmm combination. A flow ID may be reused, so it is possible to see unrelated packets with the same flow ID in a capture before or after the connection you are interested in.
- 4. In the display filter type 'tcp.port == 8080'. Now Select one of the RST packets and expand the F5 Medium Details. Notice there is a RST Cause value. In this case the RST Cause is "No local listener". This indicates that there is no VIP on the F5 that matches the connection request. There are other RST causes. In the F5 Medium Details you will only see RST Cause for packets that were RST by the F5.

_		· · ·		× (-) · · ·	•	
	tcp.port	t == 8080				
No.		Time	Source	Destination	Protocol	Length Info
Y	5311	52.857522	10.128.10.100	10.128.10.200	TCP	154 IN s1/tmm0 : 49520 → 8080 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
i.	5313	52.858455	10.128.10.100	10.128.10.200	TCP	154 IN s1/tmm1 : 49521 → 8080 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
	5314	52.858473	10.128.10.200	10.128.10.100	TCP	168 8080 → 49521 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0 [F5RST: No local listener]
	5315	53 108577	10 128 10 100	10 128 10 200	TCP	154 TH ≤1/tmm2 + 49522 → 8080 [SYH] Sec=0 Win=8192 Len=0 MSS=1460 WS=4 SACK PERM=1
⊳	Frame	5312: 168 byte	es on wire (1344 bits), 168 bytes captured	(1344 b	its)
⊳	Ether	net II, Src: On	racle_46:8d:06 (2c:c2	:60:46:8d:06), Dst: On	acle_6e	:41:20 (2c:c2:60:6e:41:20)
⊳	802.10	Q Virtual LAN,	PRI: 0, CFI: 0, ID: 4	4094		
⊳	Inter	net Protocol Ve	ersion 4, Src: 10.128	.10.200, Dst: 10.128.1	10.100	
⊳	Trans	mission Control	l Protocol, Src Port:	8080, Dst Port: 49520	ð, Seq: .	1, Ack: 1, Len: 0
4	F5 Et	hernet trailer				
	⊿ F5	Medium Details	5			
		Flow ID: 0x000	002afdc15d59c0			
		Peer ID: 0×000	00000000000000			
		Connflow Flags	; High Bits: 0×0000000	90		
		Connflow Flags	: 0×00000020			
		Flow Type: 0x4	-6			
		HA Unit: 0×01				
		Ingress Slot:	0			
		Ingress Port:	0			
		Priority: 0				
	⊳	RST cause: [26	57c0a3:2172] No local	listener		
	▷ F5	High Details				

4.1.10 F5 High Details

1. Now Expand the F5 High Details on one of the SSL sessions data packets. (You can type in a display filter of 'f5ethtrailer.peeraddr' to retrieve the session we are looking for). Make sure you select a packet that has Application Data in the Info field.

				•				-						
	∏ f5€	thtrailer.peeradd	r									\times \rightarrow \cdot	Expression	i 1
	No.	Time	Source	Destination	Protocol	Length	Info							
	+	579 7.520756	10.1.10.201	10.1.10.51	TLSv1.2	1685	OUT	s1/tmm1	: Application	Data				
		580 7.521996	10.1.10.51	10.1.10.201	TCP	208	IN	s1/tmm1	: 48750 → 443	[ACK]	Seq=11714	Ack=165108	3 Win=65160	Lei
I		581 7.522622	10.1.10.201	10.1.10.51	TLSv1.2	1685	OUT	s1/tmm1	: Application	Data				
I		582 7.523828	10.1.10.51	10.1.10.201	TCP	208	IN	s1/tmm1	: 48/50 → 443	[ACK]	Seq=11/14	Ack=166585	Win=65160	Lei
	4													Þ
	 Ethernet II, Src: Oracle_1a:a5:83 (2c:c2:60:1a:a5:83), Dst: Oracle_5f:e5:b2 (2c:c2:60:5f:e5:b2) > 802.10 YIrual LAN, PRI: 0, CFI: 0, D1: 4094 Internet Protocol Version 4, Src: 10.1.10.51, Dst: 10.1.10.201 Transmission Control Protocol, Src Port: 48750, Dst Port: 443, Seq: 11714, Ack: 165108, Len: 0 F5 Ethernet trailer F5 Ethernet trailer 													
	*	F5 Medium Details F5 High Details Peer IP Prot Peer VIAN: 4	ils 5 :ocol: 6 1093											
		Peer remote Peer remote Peer local a Peer local a	address: 10.1.20.2 address: ::ffff:10 address: 10.1.20.24 address: ::ffff:10.	0 .1.20.20 0 1.20.240										
		Peer local address: ::ffff:10.1.20.240 Peer remote port: 80 Peer local port: 49925												

- 2. The F5 High Details contains a lot of valuable information. In the example above we see that the Peer IP Protocol is 6 or TCP.
- 3. The Peer VLAN is going to be the VLAN that the traffic enters the F5 from. In the example this is VLAN 4093 which is the external VLAN.
- 4. The Peer remote address for an Outbound packet will be the Application server IP address, if it were Inbound the address would be the Client Address. The Peer Remote address will always be an

address that is not on the BIG-IP directly, in this case 10.1.20.20. The second Peer remote address is the IPv6 version of the address.

- 5. The Peer local address is the SNAT address for this particular Virtual Server, in this case 10.1.20.240. Once again the IPv6 version is below that.
- 6. Next we see the Peer remote port. The remote port is the port that the traffic is coming from on the remote side. In this case the application server is responding from port 80.
- 7. Next we have the Peer local port. This is the port the F5 is talking with the remote side on. In this case it is port 49925. If this were a request coming from the client, the local port would be 443 as the Virtual Server is configured with port 443 and the remote port would be a port > 1024.
- The F5 High Details provide great information on what pool member is selected on a particular conversation that you are tracking down. This makes it possible to determine which server may be having issues in an application problem.

4.1.11 High Details and Other Field Dissectors

- 1. In order to see how the other field dissectors becomes useful, enter a display filter of 'ip.addr==10.1.20.240'.
- 2. Notice that the Source and Destination fields in the results do not contain the ip address of 10.128.20.210 as shown in the image. In the lab you won't see the IP 10.1.20.240 in the source or destination fields.

- 20				- <u> </u>					
J	p.addr==10.128.20.210								
N	o.	Time	Source	Destination	Protocol	Length Info			
	173	3.820632	10.128.10.200	10.128.10.100	TLSv1.2	1667 OUT	s1/tmm0	: Application	Data
Τ	174	3.820672	10.128.10.200	10.128.10.100	TLSv1.2	1667 OUT	s1/tmm0	: Application	Data
	175	3.820863	10.128.10.200	10.128.10.100	TLSv1.2	1667 OUT	s1/tmm0	: Application	Data
1	Frame	174: 1667 byte	es on wire (13336 bits), 1667 bytes capture	d (13336	bits)			
l	Ether	net II, Src: Or	acle 46:8d:06 (2c:c2:	60:46:8d:06), Dst: Or	acle Ge:	41:20 (2c:	c2:60:6e	:41:20)	
l	802.10	Q Virtual LAN,	PRI: 0, CFI: 0, ID: 4	094	_				
1	Inter	net Protocol Ve	ersion 4, Src: 10.128.	10.200, Dst: 10.128.1	0.100				
1	Trans	Transmission Control Protocol, Src Port: 443, Dst Port: 50407, Seq: 6104, Ack: 1060, Len: 1489							
1	Secure	e Sockets Layer							
	F5 Eth	F5 Ethernet trailer							
	Þ F5	F5 Low Details							
	Þ F5	▷ F5 Medium Details							
	▲ F5 High Details								
		Peer IP Protocol: 6							
		Peer VLAH: 4093							
		Peer remote address: 10.128.20.210							
	Peer remote address: ::ffff:10.128.20.210								
		Peer local add	ress: 10.128.20.11						
		Peer local add	ress: ::ffff:10.128.2	0.11					
		Peer remote po	rt: 80						
		Peer local por	t: 58664						
		F							

- 3. Is the display filter broken?
- 4. No it is not. Notice in the F5 High Details that the Peer remote address is 10.128.20.210. This is the pool member selected for the pool in the virtual server.
- 5. With the other field dissectors value turned on in Wireshark, you can set a display filter of the pool member you may be troubleshooting and see which virtual is being selected on the traffic. Or you can set a display filter of the client and see all the traffic to the pool members even with a SNAT pool selected.

4.1.12 SSL Decryption

There are two ways to decrypt the SSL traffic. Both ways require that you perform one of the following tasks before you take the TCP Capture.

SSL Decrypt from Windows Client

1. To use the client to decrypt you must add a System Variable to log the session key data for decryption. On a windows client you would go into the Environment Variables and add a SSLKEYLOGFILE value to a text file on the machine as in the following image.

ystem Properties	5				23
Computer Name	Hardware	Advanced	System Protection	Remote	
Environment \	/ariables			Σ	z
Edit System	m Variable			×	
Variable n	iame:	SSLKEYLOG	FILE		
Variable v	alue:	c:\f5_lab\pr	esession.txt		
				Cancel	
			ОК	Cancel	
System varia	ibles		ОК	Cancel	
System varia	ables	alue	ОК	Cancel	
System varia Variable PROCESSO	ables V)R_R 0	alue f0b	ОК	Cancel	
System varia Variable PROCESSO PSModuleP	ables V DR_R 0 'ath C	alue f0b ::\Windows\s\	OK	Cancel	
System varia Variable PROCESSO PSModuleP SSLKEYLOO	ables V DR_R 0 'ath C 3FILE c	alue f0b :: \Windows\s) : \f5_lab \prese	OK /stem32\WindowsPo ession.txt	Cancel	
System varia Variable PROCESSO PSModuleP SSLKEYLOO TEMP	ables V DR_R 0 Path C GFILE C	alue f0b ::\Windows\s) :\f5_lab\prese ::\Windows\TB	OK ystem32\WindowsPo ession.txt EMP	Cancel	
System varia Variable PROCESSO PSModuleP SSLKEYLOO TEMP	ables V DR_R 0 Path C GFILE C C	alue f0b : \Windows\s) : \f5_lab \prese :: \Windows\TE New	OK vstem32\WindowsPo ession.txt EMP Edit	Cancel	

- 2. Once the system variable has been put in place you can then launch a web browser and start the traffic that you want to analyze.
- 3. Once the traffic has been captured you will import the capture file into Wireshark and configre the SSL options to use the pre-master key file defined in the system variables.

SSL Decrypt from Linux Client

1. On the Ubuntu client open a terminal window and run the following commands:

```
touch session-key.log
export SSLKEYLOGFILE=/home/f5student/session-key.log
chromium-browser
```

- 2. This will launch the Chrome browser and once you close the browser it will stop logging the SSL Session key data.
- 3. Once the traffic has been captured you will import the capture file into Wireshark and configure the SSL options to use the session-key.log file.

SSL Decrypt from F5

More often you will not have access to modify the client in order to capture the SSL session data. The other option is to get the pre-master session data from the F5 itself by doing the following.

1. Configure a new iRule as follows:

```
when CLIENTSSL_HANDSHAKE {
    log local0. "RSA Session-ID:[SSL::sessionid] Master-Key:[SSL::sessionsecret]"
  }
  when SERVERSSL_HANDSHAKE {
    log local0. "RSA Session-ID:[SSL::sessionid] Master-Key:[SSL::sessionsecret]"
  }
```

- 2. Apply this new iRule to the virtual server. In our lab environment the iRule has already been created and applied to the Virtual Server.
- 3. You can now start a topdump and surf the website.
- 4. After you have stopped the tcpdump, you will now need to SSH to the F5 and run the following command:

```
grep Session-ID /var/log/ltm | sed 's/.*\(RSA.*\)/\1/' > /var/tmp/session.pms
```

5. Now the session.pms file can be pulled from the F5 and put into Wireshark.

4.1.13 Decrypting SSL in Wireshark

Now you need to have your pre-master key file and your capture moved to your local box. To do this do the following:

- 1. Open Terminal on the Ubuntu Jump Box.
- 2. Change directory to Documents by typing: 'cd Documents'.
- 3. Run the following commands:

- 4. Now open Wireshark.
- 5. Once Wireshark is open go to Edit/Preferences.

6. Expand on the left side, Protocols, then select SSL.

shark · Preferences
SME2 SMEDirect SML SMPP SMTP SNA SNMP SoulSeek SoupEinTCP SPDY SPRT SRVLOC SSCOP SSH SSL STANAG 506 STANAG 506 StarTeam STP STT SUA SV SYNCHROPH T.38

- 7. Browse to the pre-master session key file and click on save.
- 8. Open in Wireshark the pcap file you pulled down from the F5 BIG-IP.
- 9. Right click on one of the SSL packets and select Follow, SSL Stream.

Mark/Unmark Packet Ignore/Unignore Packet Set/Unset Time Reference	Ctrl+M Ctrl+D Ctrl+T) 1:20 (2c:c2:60:6e:
Time Shift Packet Comment	Ctrl+Shift+T Ctrl+Alt+C	, Ack: 1028, Len:
Edit Resolved Name		
Apply as Filter	•	-
Prepare a Filter	•	
Conversation Filter	•	
Colorize Conversation	+	
SCTP	•	
Follow	•	TCP Stream
Copy	•	UDP Stream
		SSL Stream
Protocol Preferences	•	HTTP Stream
Decode As	L	
Show Packet in New Windov	v	

10. You will now see unencrypted SSL data in the capture as follows:

Wireshark · Follow SSL Stream (tcp.stream eq 33) · hackazon

```
GET /css/bootstrapValidator.css HTTP/1.1
Host: hackazon.f5demo.com
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, lik
Accept: text/css,*/*;q=0.1
Referer: https://hackazon.f5demo.com/
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9
Cookie: visited_products=%2C81%2C1%2C16%2C; JSESSIONID=pddeqa6fsnlpha9k
HTTP/1.1 200 OK
Date: Fri, 04 May 2018 15:23:44 GMT
Server: Apache/2.4.7 (Ubuntu) PHP/5.5.9-1ubuntu4.12 OpenSSL/1.0.1f
Last-Modified: Thu, 17 Sep 2015 11:23:30 GMT
ETag: "1d8-51fefa5169ae1-gzip"
Accept-Ranges: bytes
Vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 308
Connection: close
Content-Type: text/css
```

Resilient Data Center Architectures with F5 BIG-IP

This class covers covering common High Availability, BGP configurations on the BIG-IP.

Expected time to complete: 3 hours

5.1 Getting Started

You will be using an ssh client to access all components of this lab. All configuration will be done via the CLI.

Please follow the instructions provided by the instructor to start your lab and access your jump host.

Note: All work for this lab will be performed exclusively from the Linux Jumphost via ssh.

No installation or interaction with your local system is required. If you do not have an ssh client you can install the https://putty.org

5.1.1 Lab Topology

The following components have been included in your lab environment:

- 4 x F5 BIG-IP VE (v13.1)
- 7 x CSR 1000v Virtual Routers
- 1 x Linux Webserver (xubuntu 14.04)
- 1 x Linux Jumphost

Lab Components

The following table lists the management IP Addresses and Credentials for all components:

gram		
Host	Management IP	Credentials
Linux Jumphost	<public ip="" on="" td="" work-<=""><td>ubuntu:Agility2018f5</td></public>	ubuntu:Agility2018f5
	sheet>	
W_A_BIGIP	192.168.1.3	root:default
W_B_BIGIP	192.168.1.6	root:default
W_CPE_A_CSR1K	192.168.1.9	root:default
W_CPE_B_CSR1K	192.168.1.7	root:default
E_A_BIGIP	192.168.1.8	root:default
E_B_BIGIP	192.168.1.4	root:default
E_CPE_A_CSR1K	192.168.1.14	root:default
SP_A_CSR1K	192.168.1.10	root:default
SP_B_CSR1K	192.168.1.5	root:default
SP_C_CSR1K	192.168.1.15	root:default
Web Service	10.3.99.200	

Table 5.1: Management interfaces. All other interfaces are on dia-

Note: Additional Credentials - enable password or priveleged mode on the CSR1000v routers: san-fran

Priveleged mode allows you to run commands that might be disruptive to network traffic or enter configuration mode.

5.1.2 BIG-IP CLI Primer

bash shell

Default linux shell when you log in to the BIG-IP as root

Common commands you can run from here:

- ping
- traceroute
- tcpdump
- imish (used to access the ZebOS router shell)
- tmsh (used to access the traffic management shell for BIG-IP configuration)

tm shell (tmsh)

From bash any command you know the syntax of can be entered directly by preceding it with the 'tmsh' command

[admin@BIGIP131:Active:In Sync] ~ # tmsh run sys failover standby

For context based help and tab completion you can enter the 'tmsh' command and go directly to the prompt.

```
[admin@BIGIP131:Active:In Sync] ~ # tmsh
admin@(BIGIP131)(cfg-sync In Sync)(Active)(/Common)(tmos)#
```

Using the '?' for context aware help

admin@(BIGIP131)(cf	g-sync In Sync)(Active)(/Common)(tmos)# create ltm ?
Modules:	
auth	Virtual server authentication configuration
cipher	Cipher Rule and Group configuration
classification	Traffic Classification
data-group	Data group configuration
dns	DNS configuration
html-rule	Generalized HTML rule-based patcher
message-routing	Message routing framework configuration
monitor	LTM monitor templates
persistence	Virtual server persistence configuration
profile	Virtual server profile configuration
tacdb	TACDB configuration.
Components:	
eviction-policy	Defines an eviction policy, used to select which flows to evict
⇔when approaching	limits.
ifile	iFile Configuration
nat	Network address translation configuration
node	Node specific pool member configuration
policy	Centralized Policy Matching configuration
policy-strategy	Centralized Policy Matching rule selection strategy
pool	Load balancing pool configuration
rule	iRules configuration
rule-profiler	
snat	Secure network address translation (SNAT) configuration
snat-translation	SNAT translation address configuration
snatpool	Collections of SNAT translation addresses
traffic-class	Traffic Class Configuration
virtual	Virtual server configuration
virtual-address	Virtual server IP address configuration

Using 'tab' to offer possible completions

admin@(BIGIP131)(cfg	g-sync In Sync)(Acti	ve)(/Common)(tmos)#	create ltm	
Modules:				
auth	classification	dns	message-routing	L
⇔persistence	tacdb			
cipher	data-group	html-rule	monitor	profile
Components:				
eviction-policy	nat	policy	pool	rule-
⊶profiler snat	-translation traf	fic-class virt	ual-address	
ifile	node	policy-strategy	rule	snat 🔒
↔ snatpoo	ol virtual			

By partially typing a keyword you can use 'tab' to either auto-complete or give you the list of options.

```
admin@(BIGIP131)(cfg-sync In Sync)(Active)(/Common)(tmos)# create ltm po
Components:
policy policy-strategy pool
```

To exit the tmsh shell just type 'quit':

```
admin@(BIGIP131)(cfg-sync In Sync)(Active)(/Common)(tmos)# quit
[admin@BIGIP131:Active:In Sync] ~ #
```

ZebOS router shell (imish)

From the BIG-IP bash cli you can enter the ZebOS router shell by typing the command 'imish'. If you have multiple route domains, you can specify which by adding the '-r #'

Route domain '0' is default.

[admin@BIGIP131:Active:In Sync] ~ # imish -r 0

From there you can enter priveleged mode which will allow you do run administrative level commands and also enter in to the configuration mode.

Note how the prompt changes from '>' to '#'. This is how you can determine which mode you are in. If a command fails, it may be because you do not have sufficient priveleges. There is no enable password on the ZebOS instances for this lab.

```
[root@E_A_BIGIP-13:Active:Standalone] log # imish
E_A_BIGIP-13.local[0]>enable
E_A_BIGIP-13.local[0]#
```

From priveleged mode, you can type 'configure terminal' to enter configuration mode. You can shorten this as shown below with the command 'config t' as you will see often in this lab.

```
E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
```

Note: Cisco devices in this lab behave similar to the ZebOS cli with the exception of requiring a secondary enable password to access priveleged mode.

5.2 Module 1 – Resilient Data Center Architectures

In this module you will learn how to configure BGP on the BIG-IP and understand how High Availability configurations work with ZebOS and external network devices.

On the West Data Center you will configure a standard HA Active/Standby Pair of BIG-IP devices and peer with your CPE devices connecting to the Internet. It is designed to help you understand how ZebOS interacts with the BIG-IP and any BGP peers.

On the East Data Center you will configure two redundant BIG-IP devices using BGP as the failover mechanism itself. You will also configure and test controlling failover between the two data centers.

Lastly in Lab 3 you will go through some basic troubleshooting steps.

5.2.1 Lab 1: West Data Center Configuration

In this lab you will be configuring a BIG-IP HA cluster and setting it to advertise available virtual servers through the BGP protocol.

Configure the BIG-IP HA Cluster in the West Data Center

From the jumphost ssh to the W_A_BIGIP-13

root@jumphost:~# ssh -1 root 192.168.1.3

```
tmsh modify sys ntp servers add { pool.ntp.org }
tmsh mv cm device bigip1 W_A_BIGIP-13.local
tmsh modify cm device W_A_BIGIP-13.local configsync-ip 192.168.255.10
tmsh modify cm device W_A_BIGIP-13.local unicast-address { { ip 192.168.255.10 } }
```

From the jumphost ssh to the W_B_BIGIP-13

root@jumphost:~# ssh -l root 192.168.1.6

```
tmsh modify sys ntp servers add { pool.ntp.org }
tmsh mv cm device bigip1 W_B_BIGIP-13.local
tmsh modify cm device W_B_BIGIP-13.local configsync-ip 192.168.255.11
tmsh modify cm device W_B_BIGIP-13.local unicast-address { { ip 192.168.255.11 } }
```

Create the trust domain and sync-failover group from one of the two BIGIP's:

From W_B_BIGIP-13

```
tmsh modify cm trust-domain /Common/Root ca-devices add { 192.168.255.10 } name W_A_

→BIGIP-13.local username admin password admin

tmsh create cm device-group sync-failover type sync-failover auto-sync enabled save-

→on-auto-sync true devices add { W_A_BIGIP-13.local W_B_BIGIP-13.local }
```

Run the initial configuration sync from one of the two BIGIP's:

```
tmsh run cm config-sync to-group sync-failover
[root@W_B_BIGIP-13:Active:Changes Pending] config #
[root@W_B_BIGIP-13:Active:Awaiting Initial Sync] config #
[root@W_B_BIGIP-13:Active:In Sync] config #
[root@W_B_BIGIP-13:Active:In Sync] config #
```

Save the configuration on both BIG-IP devices

tmsh save sys config partitions all

Create an application configuration for a virtual server and a pool member

Create the following virtual server and pool member

```
tmsh create ltm pool pool1 members add { 10.3.99.200:80 } monitor tcp_half_open
tmsh create ltm virtual vip1 destination 10.99.99.100:80 source-address-translation {
    →type automap } pool pool1 profiles add { tcp http }
```

Note: The configuration should now be auto-sync'd to the other device and auto-saved.

Attention: The virtual server is not available.

[root@W_A_BIGIP-13:	:St	candby:In Sync] config # tmsh show ltm virtual
Ltm::Virtual Server	r:	vipl
Status		
Availability	:	offline
State	:	enabled
Reason	:	The children pool member(s) are down
CMP	:	enabled
CMP Mode	:	all-cpus
Destination	:	10.99.99.100:80

The pool members are unavailable.

```
[root@W_A_BIGIP-13:Standby:In Sync] config # tmsh show ltm pool
_____
Ltm::Pool: pool1
_____
Status
 Availability : offline
 State : enabled
         : The children pool member(s) are down
 Reason
 Monitor : tcp_half_open
 Minimum Active Members : 0
 Current Active Members : 0
    Available Members : 0
       Total Members : 1
       Total Requests : 0
     Current Sessions : 0
```

You need to create a static route to the web server located in the core network on both BIG-IPs.

tmsh create net route webservers network 10.3.99.0/24 gw 10.1.20.254

Note: This only needs to be configured on one device as seen below

```
[root@W_B_BIGIP-13:Active:In Sync] config # tmsh create net route webservers network_

→10.3.99.0/24 gw 10.1.20.254
[root@W_B_BIGIP-13:Active:Not All Devices Synced] config #
[root@W_B_BIGIP-13:Active:In Sync] config #
```

Your virtual server should now show available.

Note: From the jump host you can now try to reach the website

Either open a web browser and browse to http://10.99.99.100 or from the jump host CLI, type:

curl http://10.99.99.100

Why is it not available?

Configure the route advertisement on the BIG-IP cluster

On both W_A_BIGIP and W_B_BIGIP configure the following:

tmsh modify net route-domain 0 routing-protocol add { BGP }

Note: The following just needs to be applied on just one device

tmsh modify ltm virtual-address 10.99.99.100 route-advertisement all

Note:

route-advertisement Specifies the route advertisement setting for the virtual address. The default value is disabled.

enabled or selective Route is advertised when virtual-address is available.

disabled Route is not advertised.

always Route is advertised regardless of the availability status.

any Route is advertised when any of the contributing virtual server is available.

all Route is advertised when all of the contributing virtual server is available.

Because the previous commands are also base configuration you should save the configuration on both devices.

tmsh save sys config

Now you can begin to configure the routing protocol in ZebOS. To reach the ZebOS CLI, from the BIG-IP BASH shell.

```
[root@W_B_BIGIP-13:Active:In Sync] config # imish
[root@W_B_BIGIP-13:Active:In Sync] config # enable
W_B_BIGIP-13.local[0]#show ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default
C 10.1.10.0/24 is directly connected, external
C 10.1.20.0/24 is directly connected, internal
K 10.3.99.0/24 [0/0] via 10.1.20.254, internal
```

```
K 10.99.99.100/32 [0/0] is directly connected, tmm
C 127.0.0.1/32 is directly connected, lo
C 127.1.1.254/32 is directly connected, tmm
C 192.168.255.0/24 is directly connected, ha
Gateway of last resort is not set
```

```
[root@W_A_BIGIP-13:Active:In Sync] config # imish
[root@W_A_BIGIP-13:Active:In Sync] config # enable
W_A_BIGIP-13.local[0]>sh ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
       O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default
       10.1.10.0/24 is directly connected, external
С
       10.1.20.0/24 is directly connected, internal
С
       10.3.99.0/24 [0/0] via 10.1.20.254, internal
Κ
       127.0.0.1/32 is directly connected, lo
С
С
       127.1.1.254/32 is directly connected, tmm
С
       192.168.255.0/24 is directly connected, ha
Gateway of last resort is not set
```

Note: The two kernel routes designated with a 'K'. These are routes provided to ZebOS from tmm. The first route you may recall is 10.3.99.0/24. This is the static route you configured via tmsh. The second route, 10.99.99.100/32 is the virtual server.

Note: Why does the kernel route for 10.99.99.0/32 only show up in one of the devices?

Force a failover event to occur on the 'Active' device and validate.

W_B_BIGIP-13.local[0]#quit

tmsh run sys failover standby

Note: This needs to be run from whichever device in your HA Pair is currently active. Once you 'quit' imish, it can be determined from the bash shell prompt.

[root@W_A_BIGIP-13:Active:In Sync] [root@W_B_BIGIP-13:Active:In Sync]

```
[root@W_A_BIGIP-13:Active:In Sync] config # imish
[root@W_B_BIGIP-13:Active:In Sync] config # enable
W_B_BIGIP-13.local[0]#sh ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default
```

C 10.1.10.0/24 is directly connected, external C 10.1.20.0/24 is directly connected, internal K 10.3.99.0/24 [0/0] via 10.1.20.254, internal C 127.0.0.1/32 is directly connected, lo C 127.1.1.254/32 is directly connected, tmm C 192.168.255.0/24 is directly connected, ha

Gateway of last resort is not set

```
[root@W_A_BIGIP-13:Active:In Sync] config # imish
[root@W_B_BIGIP-13:Active:In Sync] config # enable
W_A_BIGIP-13.local[0]#show ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
       O - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default
С
        10.1.10.0/24 is directly connected, external
С
        10.1.20.0/24 is directly connected, internal
Κ
        10.3.99.0/24 [0/0] via 10.1.20.254, internal
        10.99.99.100/32 [0/0] is directly connected, tmm
K
С
        127.0.0.1/32 is directly connected, lo
С
        127.1.1.254/32 is directly connected, tmm
С
        192.168.255.0/24 is directly connected, ha
Gateway of last resort is not set
```

Configure the iBGP session with the West CPE devices W_CPE_A_CSR1k and W_CPE_A_CSR1k. The CPE configuration is already done for you so you only need to configure the two BIG-IP devices.

```
[root@W_A_BIGIP-13:Active:In Sync] config # imish
W_A_BIGIP-13.local[0]>enable
W_A_BIGIP-13.local[0]#config t
W_A_BIGIP-13.local[0](config)#router bgp 65101
W A BIGIP-13.local[0](config-router)# neighbor 10.1.10.3 remote-as 65101
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.3 description W_CPE_A
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.4 remote-as 65101
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.4 description W_CPE_B
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.6 remote-as 65101
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.6 description W_B_BIGIP-13
W_A_BIGIP-13.local[0] (config-router) # redistribute kernel
W_A_BIGIP-13.local[0] (config) #end
W_A_BIGIP-13.local[0]#wr
Building configuration...
[OK]
W_A_BIGIP-13.local[0]#
```

```
[root@W_B_BIGIP-13:Active:In Sync] config # imish
W_B_BIGIP-13.local[0]>enable
W_B_BIGIP-13.local[0]#config t
W_B_BIGIP-13.local[0](config)#router bgp 65101
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.3 remote-as 65101
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.3 description W_CPE_A
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.4 remote-as 65101
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.4 description W_CPE_B
```

```
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.5 remote-as 65101
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.5 description W_A_BIGIP-13
W_B_BIGIP-13.local[0](config-router)#redistribute kernel
W_B_BIGIP-13.local[0](config-router)#end
W_B_BIGIP-13.local[0]#wr
Building configuration...
[OK]
W_B_BIGIP-13.local[0]#
```

Note: BGP has not come up between the BIG-IP's. Why is that?

```
W_A_BIGIP-13.local[0]#sh ip bgp summary
BGP router identifier 192.168.255.10, local AS number 65101
BGP table version is 3
4 BGP AS-PATH entries
0 BGP community entries
Neighbor
              V
                 AS MsgRcvd MsgSent
                                       TblVer InQ OutQ Up/Down State/PfxRcd
10.1.10.3
              4 65101 41 32
                                       3
                                               0
                                                    0 00:00:26
                                                                 6
                           40
                                  30
10.1.10.4
              4 65101
                                            3
                                                0
                                                     0 00:00:26
                                                                      6
10.1.10.6
              4 65101
                           7
                                  7
                                            0
                                                0
                                                     0 00:01:04 Active
```

Configure port lockdown on BIG-IP's to allow BGP via external interface on both BIG-IP:

```
tmsh list net self external allow-service
    net self external {
        allow-service none
    }
```

tmsh modify net self external allow-service add { tcp:179 }

```
tmsh list net self external allow-service
  net self external {
      allow-service {
        tcp:bgp
      }
  }
}
```

Validate BGP is now established between both BIGIP's

```
W_B_BIGIP-13.local[0]#sh ip bgp summary
BGP router identifier 192.168.255.11, local AS number 65101
BGP table version is 5
4 BGP AS-PATH entries
0 BGP community entries
Neighbor
             V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.1.10.3
             4 65101 32 23 5 0 0 00:03:16 6
                                       5 0 0 00:03:16
10.1.10.4
             4 65101
                       32
                               23
                                                                6
10.1.10.5
             4 65101
                       12
                              11
                                       5 0
                                                 0 00:00:07
                                                                2
Total number of neighbors 3
```

Note: iBGP requires that you configure a full mesh. But in this simplified scenario you do not need to

configure a full mesh for iBGP because there are only four routers and you've got the BIG-IP HA Cluster and your outbound gateway. Your topology may vary and you may want to configure a full mesh if there are other devices. Additionally in a larger topology you may want to configure eBGP between the CPE and the BIG-IP clusters. This is explored in more depth when you configure the East data center.

Note: The redistribute kernel command is the secret sauce that allows tmm routes from the BIG-IP to be advertised to BGP peers.

Validate that the website is accessible from the jumphost

```
root@jumphost:~# curl 10.99.99.100
<html><body><hl>It works!</hl>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
```

Validate your configuration on both of the CPE routers

You can telnet to either of the CPE devices

```
csr1000v-W_CPE_A#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default, U - per-user static route
        o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
        a - application route
        + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
       1.0.0.0/32 is subnetted, 2 subnets
        1.1.1.1 is directly connected, Loopback100
С
0
        1.1.1.2 [110/2] via 10.1.10.4, 02:49:46, GigabitEthernet4
        3.0.0/32 is subnetted, 1 subnets
В
        3.3.3.3 [20/0] via 172.16.1.3, 00:05:44
       10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
С
        10.1.10.0/24 is directly connected, GigabitEthernet4
L
        10.1.10.3/32 is directly connected, GigabitEthernet4
В
        10.99.99.100/32 [200/0] via 10.1.10.5, 00:00:07
        172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
С
        172.16.1.0/24 is directly connected, GigabitEthernet2
Τ.
        172.16.1.4/32 is directly connected, GigabitEthernet2
        172.16.2.0/24 [20/0] via 172.16.1.3, 00:35:33
R
С
        172.16.3.0/24 is directly connected, GigabitEthernet3
T.
        172.16.3.4/32 is directly connected, GigabitEthernet3
В
        172.16.6.0/24 [20/0] via 172.16.1.3, 00:49:06
```

Note: The BGP route should be pointing to the 'Active' device in the HA cluster.

Initiate a failover event to determine how the route update happens.

From whichever BIG-IP device is active:

tmsh run sys failover standby

csr1000v	7-W_CPE_A#sh ip route				
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP					
	D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area				
	N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2				
	E1 - OSPF external type 1, E2 - OSPF external type 2				
	i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2				
	ia - IS-IS inter area, * - candidate default, U - per-user static route				
	o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP				
	a - application route				
	+ - replicated route, % - next hop override, p - overrides from PfR				
Gateway	of last resort is not set				
	1.0.0.0/32 is subnetted, 2 subnets				
С	1.1.1.1 is directly connected, Loopback100				
0	1.1.1.2 [110/2] via 10.1.10.4, 02:51:26, GigabitEthernet4				
	3.0.0.0/32 is subnetted, 1 subnets				
В	3.3.3.3 [20/0] via 172.16.1.3, 00:07:24				
	10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks				
С	10.1.10.0/24 is directly connected, GigabitEthernet4				
L	10.1.10.3/32 is directly connected, GigabitEthernet4				
В	10.99.99.100/32 [200/0] via 10.1.10.6, 00:00:02				
	172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks				
С	172.16.1.0/24 is directly connected, GigabitEthernet2				
L	172.16.1.4/32 is directly connected, GigabitEthernet2				
В	172.16.2.0/24 [20/0] via 172.16.1.3, 00:37:13				
С	172.16.3.0/24 is directly connected, GigabitEthernet3				
L	172.16.3.4/32 is directly connected, GigabitEthernet3				
В	172.16.6.0/24 [20/0] via 172.16.1.3, 00:50:46				

Note: If you were watching the update time you'll notice it takes a bit for the next-hop address to change. This can be modified with timers, or you can use a floating self-ip between an HA pair of BIG-IP's to minimize the update time because the Next-hop entry for the floating address never needs to be updated.

Validate that the website is accessible from the jumphost

```
root@jumphost:~# curl 10.99.99.100
<html><body><hl>It works!</hl>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
```

Next we will configure a floating self-ip address to minimize the need for the next-hop to change. On one of the West Data Center BIG-IP devices. Combined with mac-masquerading and connection mirroring this is the least disruptive failover configuration.

You can either wait until the route update occurs or you can reset the BGP neighbors with the clear ip bgp * command

```
[root@W_B_BIGIP-13:Active:In Sync] config # imish
W_B_BIGIP-13.local[0]>enable
W_B_BIGIP-13.local[0]#clear ip bgp *
```

```
csr1000v-W_CPE_A#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
        o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
        a - application route
        + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
        1.0.0.0/32 is subnetted, 2 subnets
С
        1.1.1.1 is directly connected, Loopback100
        1.1.1.2 [110/2] via 10.1.10.4, 00:31:23, GigabitEthernet4
0
        2.0.0.0/32 is subnetted, 1 subnets
        2.2.2.2 [20/0] via 172.16.1.3, 00:30:43
B
        10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
С
        10.1.10.0/24 is directly connected, GigabitEthernet4
        10.1.10.3/32 is directly connected, GigabitEthernet4
Τ.
В
        10.99.99.100/32 [200/0] via 10.1.10.7, 00:03:06
        172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
С
         172.16.1.0/24 is directly connected, GigabitEthernet2
         172.16.1.4/32 is directly connected, GigabitEthernet2
T.
         172.16.2.0/24 [20/0] via 172.16.1.3, 00:30:44
В
С
         172.16.3.0/24 is directly connected, GigabitEthernet3
         172.16.3.4/32 is directly connected, GigabitEthernet3
T.
В
         172.16.6.0/24 [20/0] via 172.16.1.3, 00:30:44
```

On the CPE devices look at the result of the show ip bgp command

```
csr1000v-W_CPE_A#sh ip bgp
BGP table version is 10, local router ID is 1.1.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
               r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
               x best-external, a additional-path, c RIB-compressed,
               t secondary path,
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
       Network
                       Next Hop
                                           Metric LocPrf Weight Path
       1.1.1.1/32
                        0.0.0.0
                                               0 32768 i
   *>
   r>i 1.1.1.2/32
                         1.1.1.2
                                                 0
                                                      100
                                                              0 i
   * i 2.2.2.2/32
                        172.16.2.3
                                                 0
                                                      100
                                                               0 65001 65002 65201 i
   *>
                         172.16.1.3
                                                               0 65001 65002 65201 i
   * i 10.3.99.0/24
                        10.1.20.254
                                                      100
                                                               0 ?
   *>i 10.99.99.100/32 10.1.10.7
                                                      100
                                                               0 ?
   r i 172.16.1.0/24
                        172.16.2.3
                                                 0
                                                      100
                                                               0 65001 ?
                                                               0 65001 ?
                         172.16.1.3
                                                 0
   r>
   * i 172.16.2.0/24
                                                              0 65001 ?
                        172.16.2.3
                                                 0
                                                      100
                         172.16.1.3
                                                 0
                                                               0 65001 ?
   *>
    * i 172.16.6.0/24
                         172.16.2.3
                                                 0
                                                      100
                                                               0 65001 65002 ?
                         172.16.1.3
                                                               0 65001 65002 ?
    *>
```

csr1000v-W_CPE_A#

Note: Compare the show ip route output in the previous step to the show ip bgp output. What looks out of place here? Why is it there? Why does it not show up in the routing table?

Create an aggregate route since many service providers will not accept anything less than a /24

On both of the West BIG-IPs configure ZebOS to only advertise an aggregate route for the virtual server network and filter out the core network advertisement.

```
[root@W A BIGIP-13:Active:In Sync] config # imish
W_A_BIGIP-13.local[0]>enable
W_A_BIGIP-13.local[0]#config t
W_A_BIGIP-13.local[0](config)#ip prefix-list PFX_ALLOW_VIPS seq 5 permit 10.99.99.0/24
W_A_BIGIP-13.local[0] (config) #route-map_RESTRICT_ADVERTISE permit 10
W A BIGIP-13.local[0] (config-route-map) # match ip address prefix-list PFX ALLOW VIPS
W_A_BIGIP-13.local[0](config)#router bgp 65101
W_A_BIGIP-13.local[0](config-router)# aggregate-address 10.99.99.0/24
W_A_BIGIP-13.local[0] (config-router) # neighbor 10.1.10.3 route-map RESTRICT_ADVERTISE.
→out
W_A_BIGIP-13.local[0](config-router) # neighbor 10.1.10.4 route-map RESTRICT_ADVERTISE,
→out
W_A_BIGIP-13.local[0] (config-router) #end
W_A_BIGIP-13.local[0]#wr
Building configuration...
[OK]
W_A_BIGIP-13.local[0]#
```

```
[root@W_A_BIGIP-13:Active:In Sync] config # imish
W_A_BIGIP-13.local[0]>enable
W_B_BIGIP-13.local[0]# config t
W_B_BIGIP-13.local[0](config)#ip prefix-list PFX_ALLOW_VIPS seq 5 permit 10.99.99.0/24
W_B_BIGIP-13.local[0] (config) #route-map RESTRICT_ADVERTISE permit 10
W_B_BIGIP-13.local[0](config-route-map)# match ip address prefix-list PFX_ALLOW_VIPS
W_B_BIGIP-13.local[0](config)#router bgp 65101
W_B_BIGIP-13.local[0](config-router)# aggregate-address 10.99.99.0/24
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.3 route-map RESTRICT_ADVERTISE.
→out
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.4 route-map RESTRICT_ADVERTISE_
⊖out.
W_B_BIGIP-13.local[0] (config-router) #end
W_B_BIGIP-13.local[0]#wr
Building configuration ...
[OK]
W_B_BIGIP-13.local[0]#
```

Validate on either of the CPE routers. You can either wait until the route update occurs or you can reset the BGP neighbors with the clear ip bgp * command

Clear ip bgp * on the active BIG-IP such that /32 is no longer advertised.

```
[root@W_B_BIGIP-13:Active:In Sync] config # imish
W_B_BIGIP-13.local[0]>enable
W_B_BIGIP-13.local[0]#clear ip bgp *
```

```
csr1000v-W_CPE_A#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default, U - per-user static route
        o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
        a - application route
        + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
        1.0.0.0/32 is subnetted, 2 subnets
        1.1.1.1 is directly connected, Loopback100
С
0
        1.1.1.2 [110/2] via 10.1.10.4, 03:04:37, GigabitEthernet4
        2.0.0.0/32 is subnetted, 1 subnets
        2.2.2.2 [20/0] via 172.16.1.3, 00:06:50
В
        10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
С
        10.1.10.0/24 is directly connected, GigabitEthernet4
        10.1.10.3/32 is directly connected, GigabitEthernet4
T.
В
        10.99.99.0/24 [200/0] via 10.1.10.7, 00:06:50
       172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
С
         172.16.1.0/24 is directly connected, GigabitEthernet2
         172.16.1.4/32 is directly connected, GigabitEthernet2
T.
         172.16.2.0/24 [20/0] via 172.16.1.3, 00:06:50
В
С
         172.16.3.0/24 is directly connected, GigabitEthernet3
         172.16.3.4/32 is directly connected, GigabitEthernet3
T.
         172.16.6.0/24 [20/0] via 172.16.1.3, 00:06:50
В
```

Validate that the website is accessible from the jumphost.

root@jumphost:~# curl 10.99.99.100
<html><body><h1>It works!</h1>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>

Add another virtual server and test the behavior of failover of the aggregate route.

Add another virtual server within the VIP subnet.

Validate that the website is accessible from the jumphost

```
root@jumphost:~# curl 10.99.99.101
<html><body><h1>It works!</h1>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
```

Disable the first pool you created.

```
tmsh modify ltm pool pool1 members modify { 10.3.99.200:http { state user-down } }
tmsh show ltm virtual vip1
                     _____
_____
Ltm::Virtual Server: vip1
                      -----
_____
Status
     Availability
                 : offline
                  : enabled
      State
      Reason
                  : The children pool member(s) are down
      CMP
                  : enabled
      CMP Mode
                  : all-cpus
                 : 10.99.99.100:80
      Destination
```

Validate that the website is still accessible from the jumphost

root@jumphost:~# curl 10.99.99.101
curl: (7) Failed to connect to 10.99.99.101 port 80: No route to host

Now look at the routing table on the CPE virtual server.

```
csr1000v-W_CPE_A#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
        o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
        a - application route
        + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
        1.0.0.0/32 is subnetted, 2 subnets
С
        1.1.1.1 is directly connected, Loopback100
        1.1.1.2 [110/2] via 10.1.10.4, 00:57:32, GigabitEthernet4
0
        2.0.0/32 is subnetted, 1 subnets
В
        2.2.2.2 [20/0] via 172.16.1.3, 00:15:52
       10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
С
        10.1.10.0/24 is directly connected, GigabitEthernet4
L
        10.1.10.3/32 is directly connected, GigabitEthernet4
       172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
С
        172.16.1.0/24 is directly connected, GigabitEthernet2
        172.16.1.4/32 is directly connected, GigabitEthernet2
T.
В
         172.16.2.0/24 [20/0] via 172.16.1.3, 00:56:56
С
         172.16.3.0/24 is directly connected, GigabitEthernet3
         172.16.3.4/32 is directly connected, GigabitEthernet3
Τ.
В
         172.16.6.0/24 [20/0] via 172.16.1.3, 00:56:56
```

On the active BIG-IP look at the routing table.

```
W_B_BIGIP-13.local[0]#sh ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
```

```
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default
       1.1.1.1/32 [200/0] via 10.1.10.3, external, 00:57:35
B
        1.1.1.2/32 [200/0] via 10.1.10.4, external, 00:57:35
В
        10.1.10.0/24 is directly connected, external
С
С
        10.1.20.0/24 is directly connected, internal
       10.3.99.0/24 [0/0] via 10.1.20.254, internal
Κ
С
        127.0.0.1/32 is directly connected, lo
С
        127.1.1.254/32 is directly connected, tmm
С
        192.168.255.0/24 is directly connected, ha
```

Note: There are no kernel routes from tmm. e.g. 10.99.99.0/24, 10.99.99.100, or 10.99.99.101. Why?

Note: You need to make sure either all virtual-addresses have advertisement-enabled or a healthy majority of them enabled or the aggregate route will be withdrawn. BGP by default needs to have a route from another routing protocol available in order to advertise a route to a BGP neighbor. In this case because only one of the virtual-addresses has it enabled and it goes down, all other addresses within the /24 are considered unreachable and so the route is withdrawn.

Re-enable the pool and then review the BIG-IP and CPE route tables.

tmsh modify ltm pool pool1 members modify { 10.3.99.200:http { state user-up } }

```
W_B_BIGIP-13.local[0]#sh ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
        O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default
        1.1.1.1/32 [200/0] via 10.1.10.3, external, 00:58:09
В
В
        1.1.1.2/32 [200/0] via 10.1.10.4, external, 00:58:09
С
        10.1.10.0/24 is directly connected, external
        10.1.20.0/24 is directly connected, internal
С
Κ
       10.3.99.0/24 [0/0] via 10.1.20.254, internal
В
       10.99.99.0/24 [200/0] is a summary, Null, 00:00:04
Κ
       10.99.99.100/32 [0/0] is directly connected, tmm
С
       127.0.0.1/32 is directly connected, lo
С
        127.1.1.254/32 is directly connected, tmm
С
        192.168.255.0/24 is directly connected, ha
Gateway of last resort is not set
```

csr1000v-W_CPE_A#sh ip route

```
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
```

```
o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
        a - application route
        + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
        1.0.0.0/32 is subnetted, 2 subnets
        1.1.1.1 is directly connected, Loopback100
С
        1.1.1.2 [110/2] via 10.1.10.4, 01:10:54, GigabitEthernet4
0
        2.0.0/32 is subnetted, 1 subnets
         2.2.2.2 [20/0] via 172.16.1.3, 00:29:14
В
        10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
         10.1.10.0/24 is directly connected, GigabitEthernet4
С
L
        10.1.10.3/32 is directly connected, GigabitEthernet4
        10.99.99.0/24 [200/0] via 10.1.10.7, 00:09:42
В
        172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
         172.16.1.0/24 is directly connected, GigabitEthernet2
С
         172.16.1.4/32 is directly connected, GigabitEthernet2
T.
В
         172.16.2.0/24 [20/0] via 172.16.1.3, 01:10:18
С
         172.16.3.0/24 is directly connected, GigabitEthernet3
         172.16.3.4/32 is directly connected, GigabitEthernet3
T.
В
         172.16.6.0/24 [20/0] via 172.16.1.3, 01:10:18
```

Validate that the websites are accessible from the jumphost

root@jumphost:~# curl 10.99.99.100
<html><body><h1>It works!</h1>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>

root@jumphost:~# curl 10.99.99.101
<html><body><h1>It works!</h1>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>

Modify the virtual-address for the second virtual server to allow route-advertisement and repeat disabling.

tmsh modify ltm virtual-address 10.99.99.101 route-advertisement selective
tmsh modify ltm pool pool1 members modify { 10.3.99.200:http { state user-down } }

```
csr1000v-W_CPE_A#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
1.0.0.0/32 is subnetted, 2 subnets
C 1.1.1.1 is directly connected, Loopback100
```

0	1.1.1.2 [110/2] via 10.1.10.4, 01:21:27, GigabitEthernet4
	2.0.0/32 is subnetted, 1 subnets
В	2.2.2.2 [20/0] via 172.16.1.3, 00:39:47
	10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
С	10.1.10.0/24 is directly connected, GigabitEthernet4
L	10.1.10.3/32 is directly connected, GigabitEthernet4
В	10.99.99.0/24 [200/0] via 10.1.10.7, 00:20:15
	172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
С	172.16.1.0/24 is directly connected, GigabitEthernet2
L	172.16.1.4/32 is directly connected, GigabitEthernet2
В	172.16.2.0/24 [20/0] via 172.16.1.3, 01:20:51
С	172.16.3.0/24 is directly connected, GigabitEthernet3
L	172.16.3.4/32 is directly connected, GigabitEthernet3
В	172.16.6.0/24 [20/0] via 172.16.1.3, 01:20:51

The route now remained when one of the virtual servers went down.

Validate that .101 website remained up while the .100 is not.

root@jumphost:~# curl 10.99.99.100
curl: (56) Recv failure: Connection reset by peer

```
root@jumphost:~# curl 10.99.99.101
<html><body><h1>It works!</h1>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
```

You can re-enable the .100 website before moving on to Module 2.

tmsh modify ltm pool pool1 members modify { 10.3.99.200:http { state user-up } }

Validate that the websites are accessible from the jumphost

```
root@jumphost:~# curl 10.99.99.101
<html><body><hl>It works!</hl>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
root@jumphost:~# curl 10.99.99.100
<html><body><hl>It works!</hl>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
```

Sample configuration

```
Sample complete configuration from one BIG-IP:
    !
    W_B_BIGIP-13.local[0]#sh run
    !
    no service password-encryption
    !
    router bgp 65101
        aggregate-address 10.99.99.0/24
```

```
redistribute kernel
   neighbor 10.1.10.3 remote-as 65101
   neighbor 10.1.10.3 route-map RESTRICT_ADVERTISE out
   neighbor 10.1.10.4 remote-as 65101
   neighbor 10.1.10.4 route-map RESTRICT_ADVERTISE out
   neighbor 10.1.10.5 remote-as 65101
!
ip prefix-list PFX_ALLOW_VIPS seq 5 permit 10.99.99.0/24
1
route-map RESTRICT_ADVERTISE permit 10
   match ip address prefix-list PFX_ALLOW_VIPS
1
line con 0
    login
line vty 0 39
   login
!
end
```

Note: This completes Lab 1

5.2.2 Lab 2: East Data Center Configuration

In this lab you will be configuring two BIG-IP standalone devices and setting it up to advertise available virtual servers through the BGP protocol.

Configure the BIG-IP East Data Center

From the jumphost ssh to the E_A_BIGIP-13

root@jumphost:~# ssh -l root 192.168.1.8

tmsh modify sys ntp servers add { pool.ntp.org }

From the jumphost ssh to the E_B_BIGIP-13

```
root@jumphost:~# ssh -l root 192.168.1.4
```

tmsh modify sys ntp servers add { pool.ntp.org }

Save the configuration on both devices

```
tmsh save sys config partitions all
```

Configure the eBGP session between E_A_BIGIP-13 and the East Core via csr1000v-CORE.

Note: The CORE Router configuration is already done for you so you only need to configure the two EAST BIG-IP devices.

E_A_BIGIP-13: On E_A_BIGIP configure the following to enable BGP for route-domain 0.

```
tmsh modify net route-domain 0 routing-protocol add { BGP }
tmsh save sys config partitions all
```

E_A_BIGIP-13: Bring up BGP with the East Core and configure the keepalive interval to 3 seconds and hold time to 9 seconds via neighbor statement instead of using the default values of 30 seconds for keepalive and 180 seconds for hold time:

```
[root@E_A_BIGIP-13:Active:In Sync] config # imish -r 0
    E_A_BIGIP-13.local[0]>enable
    E_A_BIGIP-13.local[0]#config t
    E_A_BIGIP-13.local[0](config)#router bgp 65202
    E_A_BIGIP-13.local[0](config-router)# neighbor 10.2.40.4 remote-as 65205
    E_A_BIGIP-13.local[0](config-router)# neighbor 10.2.40.4 description E_CORE
    E_A_BIGIP-13.local[0](config-router)# neighbor 10.2.40.4 timers 3 9
    E_A_BIGIP-13.local[0](config-router)# end
    E_A_BIGIP-13.local[0](config-router)# end
    E_A_BIGIP-13.local[0](config-router)# end
    E_A_BIGIP-13.local[0](config-router)# end
    E_A_BIGIP-13.local[0]#write mem
```

E_A_BIGIP-13: Verify eBGP adjacencies are up between E_A_BIGIP-13 and the East Core router - csr1000v-CORE.

```
E_A_BIGIP-13.local[0]#sh ip bgp sum

BGP router identifier 10.2.40.3, local AS number 65202

BGP table version is 2

1 BGP AS-PATH entries

0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

10.2.40.4 4 65205 5 2 2 0 0 00:00:22 2
```

E_A_BIGIP-13: Verify route for the webservice via 10.3.99.0/24 is installed in routing table after eBGP is established between E_A_BIGIP-13 and the East Core router - csr1000v-CORE.

Configure the eBGP session between E_B_BIGIP-13 and the East Core via csr1000v-CORE.

Note: The CORE Router configuration is already done for you so you only need to configure the two EAST BIG-IP devices.

E_B_BIGIP-13: On E_B_BIGIP configure the following to enable BGP for route-domain 0.

```
tmsh modify net route-domain 0 routing-protocol add { BGP }
```

tmsh save sys config partitions all

E_B_BIGIP-13: Bring up BGP with the East Core and configure the keepalive interval to 3 seconds and hold time to 9 seconds via neighbor statement instead of using the default values of 30 seconds for keepalive and 180 seconds for hold time:
```
[root@E_B_BIGIP-13:Active:In Sync] config # imish -r 0
E_B_BIGIP-13.local[0]>enable
E_B_BIGIP-13.local[0]#config t
E_B_BIGIP-13.local[0](config)#router bgp 65203
E_B_BIGIP-13.local[0](config-router)# neighbor 10.2.50.4 remote-as 65205
E_B_BIGIP-13.local[0](config-router)# neighbor 10.2.50.4 description E_CORE
E_B_BIGIP-13.local[0](config-router)# neighbor 10.2.50.4 timers 3 9
E_A_BIGIP-13.local[0](config-router)# end
E_A_BIGIP-13.local[0](config-router)# end
```

E_B_BIGIP-13: Verify eBGP adjacencies are up between E_B_BIGIP-13 and the East Core router - csr1000v-CORE.

```
E_B_BIGIP-13.local[0]#sh ip bgp sum
BGP router identifier 10.2.50.3, local AS number 65203
BGP table version is 2
1 BGP AS-PATH entries
0 BGP community entries
Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.2.50.4 4 65205 4 2 1 0 0 00:00:16 2
Total number of neighbors 1
E B BIGIP-13.local[0]#
```

E_B_BIGIP-13: Verify route for the webservice via 10.3.99.0/24 is installed in routing table after eBGP is established between E_B_BIGIP-13 and the East Core router - csr1000v-CORE.

Validate Webserver Connectivity via Core Network:

Verify that you can reach the webserver on the core network with icmp ping and curl from both BIG-IPs.

E_A_BIGIP-13: Ping the webserver @ 10.3.99.200 via the core network from E_A_BIGIP-13. Note the ping may not work immediately and could take a few seconds. Also Note the escape sequence for icmp ping on the BIGIP is "CTRL + C"

```
[root@E_A_BIGIP-13:Active:Standalone] config # ping 10.3.99.200
PING 10.3.99.200 (10.3.99.200) 56(84) bytes of data.
64 bytes from 10.3.99.200: icmp_seq=1 ttl=63 time=8.51 ms
64 bytes from 10.3.99.200: icmp_seq=2 ttl=63 time=8.12 ms
^C
--- 10.3.99.200 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1823ms
rtt min/avg/max/mdev = 8.121/8.318/8.516/0.217 ms
```

E_A_BIGIP-13: Curl the webserver @ 10.3.99.200 via the core network from E_A_BIGIP-13.

```
[root@E_A_BIGIP-13:Active:Standalone] config # curl 10.3.99.200
<html><body><hl>It works!</hl>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
```

E_B_BIGIP-13: Ping the webserver @ 10.3.99.200 via the core network from E_B_BIGIP-13. Note the ping may not work immediately and could take a few seconds. Also Note the escape sequence for icmp ping on the BIGIP is "CTRL + C"

```
[root@E_B_BIGIP-13:Active:Standalone] config # ping 10.3.99.200
PING 10.3.99.200 (10.3.99.200) 56(84) bytes of data.
64 bytes from 10.3.99.200: icmp_seq=1 ttl=63 time=6.06 ms
64 bytes from 10.3.99.200: icmp_seq=2 ttl=63 time=9.31 ms
^C
--- 10.3.99.200 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1726ms
rtt min/avg/max/mdev = 6.068/7.692/9.317/1.626 ms
```

E_B_BIGIP-13: Curl the webserver @ 10.3.99.200 via the core network from E_B_BIGIP-13.

```
[root@E_B_BIGIP-13:Active:Standalone] config # curl 10.3.99.200
<html><body><h1>It works!</h1>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
[root@E_B_BIGIP-13:Active:Standalone] config #
```

Create an application configuration for a virtual server and a pool member on E_A_BIGIP-13:

E_A_BIGIP-13: Create the following virtual server and pool member on E_A_BIGIP-13:

tmsh save sys config partitions all

E_A_BIGIP-13: Your virtual server should now show available on E_A_BIGIP-13:

Configure the route advertisement on the E_A_BIGIP-13:

E_A_BIGIP-13: Configure the eBGP session on E_A_BIGIP to East CPE_A. The CPE configuration is already done for you so you only need to configure the BIGIP side of session.

```
[root@E_A_BIGIP-13:Active:In Sync] config # imish -r 0
E_A_BIGIP-13.local[0]>enable
E_A_BIGIP-13.local[0]#config t
E_A_BIGIP-13.local[0](config)#router bgp 65202
E_A_BIGIP-13.local[0](config-router)# neighbor 10.2.20.4 remote-as 65201
E_A_BIGIP-13.local[0](config-router)# neighbor 10.2.20.4 description E_CPE_A
E_A_BIGIP-13.local[0](config-router)# neighbor 10.2.20.4 timers 3 9
E_A_BIGIP-13.local[0](config-router)# end
E_A_BIGIP-13.local[0](config-router)# end
E_A_BIGIP-13.local[0](config-router)# end
```

E_A_BIGIP-13: Verify eBGP adjacencies are up between E_A_BIGIP_13 and the East CPE_A.

```
E_A_BIGIP-13.local[0]#sh ip bgp sum
BGP router identifier 10.2.40.3, local AS number 65202
BGP table version is 3
5 BGP AS-PATH entries
0 BGP community entries
Neighbor
                     AS MsqRcvd MsqSent
                                          TblVer InQ OutQ Up/Down State/PfxRcd
                V
10.2.20.4
                                                          0 00:00:53
                4 65201
                             27
                                     21
                                                3
                                                     0
                                                                             8
10.2.40.4
                4 65205
                            157
                                     141
                                                3
                                                     0
                                                          0 01:07:25
                                                                             2
```

E_A_BIGIP-13: On E_A_BIGIP configure the following network statement for 10.99.99.0/24 such that prefix is originated locally:

```
[root@E_A_BIGIP-13:Active:Standalone] config # imish -r 0
E_A_BIGIP-13.local[0]>en
E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_A_BIGIP-13.local[0](config)#router bgp 65202
E_A_BIGIP-13.local[0](config-router)#network 10.99.99.0/24
E_A_BIGIP-13.local[0](config-router)#end
E_A_BIGIP-13.local[0]#
```

E_A_BIGIP-13: On E_A_BIGIP verify 10.99.99.0/24 is being locally originated which can be seen with "Local":

```
E_A_BIGIP-13.local[0]#sh ip bgp 10.99.99.0/24 | b Local
...skipping
Local
0.0.0.0 from 0.0.0.0 (10.2.40.3)
Origin IGP, localpref 100, weight 32768, valid, sourced, local, best
Last update: Mon Jul 16 18:07:54 2018
```

E_A_BIGIP-13: On E_A_BIGIP verify 10.99.99.0/24 is being advertised outbound to East CPE device via E_CPE_A_CSR1k:

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is learning the 10.99.99.0/24 inbound from E_A_BIGIP:

Note: You can telnet to the CPE devices using the BGP neighbor IP address from Zebos using root/default for user/pass:

Example telnet from E_A_BIGIP-13 to East CPE Device @ 10.2.20.4:

```
E_A_BIGIP-13.local[0]#telnet 10.2.20.4
Trying 10.2.20.4...
Connected to 10.2.20.4.
Escape character is '^]'.
User Access Verification
Username: root
Password:
csr1000v-E_CPE_A>
```

E_CPE_A_CSR1k: Continued... Verify that E_CPE_A_CSR1k is learning the 10.99.99.0/24 inbound from E_A_BIGIP:

```
csr1000v-E_CPE_A>show ip bgp vpnv4 vrf internet neighbors 10.2.20.3 routes
BGP table version is 26, local router ID is 2.2.2.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
           r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
           x best-external, a additional-path, c RIB-compressed,
           t secondary path,
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
   Network
                  Next Hop
                                       Metric LocPrf Weight Path
Route Distinguisher: 65201:1000 (default for vrf internet)
                                                          0 65202 65205 i
*> 3.3.3.3/32
                    10.2.20.3 4294967295
                                                          0 65202 i
    10.99.99.0/24 10.2.20.3
                                   4294967295
*>
Total number of prefixes 2
csr1000v-E_CPE_A>
```

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is installing 10.99.99.0/24 from E_A_BIGIP:

```
csr1000v-E_CPE_A>show ip route vrf internet
Routing Table: internet
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
   D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
   N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
   E1 - OSPF external type 1, E2 - OSPF external type 2
   i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
   ia - IS-IS inter area, * - candidate default, U - per-user static route
   o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
   a - application route
   + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
   1.0.0.0/32 is subnetted, 2 subnets
В
         1.1.1.1 [20/4294967294] via 172.16.6.3, 22:12:30
В
         1.1.1.2 [20/4294967294] via 172.16.6.3, 22:12:32
   3.0.0/32 is subnetted, 1 subnets
В
         3.3.3.3 [20/4294967294] via 10.2.20.3, 01:27:19
    10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
С
         10.2.20.0/24 is directly connected, GigabitEthernet2
Τ.
         10.2.20.4/32 is directly connected, GigabitEthernet2
         10.2.30.0/24 is directly connected, GigabitEthernet3
С
```

L 10.2.30.4/32 is directly connected, GigabitEthernet3
B 10.99.99.0/24 [20/4294967294] via 10.2.20.3, 01:22:58
99.0.0.0/24 is subnetted, 1 subnets
B 99.99.99.0 [20/4294967294] via 172.16.6.3, 22:13:59
172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks
B 172.16.1.0/24 [20/4294967294] via 172.16.6.3, 22:12:40
B 172.16.2.0/24 [20/4294967294] via 172.16.6.3, 22:12:40
C 172.16.6.0/24 is directly connected, GigabitEthernet5
L 172.16.6.4/32 is directly connected, GigabitEthernet5
B 172.16.99.0/24 [20/0] via 172.16.6.3, 22:13:59
csr1000v-E_CPE_A>

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is installing specific 10.99.99.0/24 from E_A_BIGIP using specific ip route command:

```
csr1000v-E_CPE_A#sh ip route vrf internet 10.99.99.0 255.255.255.0
Routing Table: internet
Routing entry for 10.99.99.0/24
Known via "bgp 65201", distance 20, metric 4294967294
Tag 65202, type external
Last update from 10.2.20.3 00:00:02 ago
Routing Descriptor Blocks:
* 10.2.20.3, from 10.2.20.3, 00:00:02 ago
Route metric is 4294967294, traffic share count is 1
AS Hops 1
Route tag 65202
MPLS label: none
```

csr1000v-SP_C: Verify that csr1000v-SP_C is installing 10.99.99.0/24 via East DC because Origin attribute is IGP versus incomplete via for West DC:

You can telnet to csr1000v-SP_C from the jumpbox @ 192.168.1.15 with root/default user/pass:

```
ubuntu@jumphost:~$ telnet 192.168.1.15
Trying 192.168.1.15...
Connected to 192.168.1.15.
Escape character is '^]'.
User Access Verification
Username: root
Password:
csr1000v-SP_C>
```

csr1000v-SP_C: Verify that csr1000v-SP_C is installing 10.99.99.0/24 in BGP table via East DC. Note the Best path is via AS 65002 988.

```
rx pathid: 0, tx pathid: 0x0
Refresh Epoch 1
65001 65101, (aggregated by 65101 192.168.255.10)
172.16.99.3 from 172.16.99.3 (172.1.1.1)
Origin incomplete, localpref 100, valid, external, atomic-aggregate
rx pathid: 0, tx pathid: 0
```

Note: The BGP peering between E_CPE_A and SP_B leverages AS 988 as seen below. The following command replaces the local private AS Path with 988 for prefixes originated from East DC to the SP Cloud.

```
csr1000v-E_CPE_A#sh run | i 988
neighbor 172.16.6.3 local-as 988 no-prepend replace-as
csr1000v-E_CPE_A#
```

csr1000v-SP_C: Verify that csr1000v-SP_C is installing 10.99.99.0/24 in the ip routing table:

```
csr1000v-SP_C>sh ip route 10.99.99.0 255.255.255.0
Routing entry for 10.99.99.0/24
   Known via "bgp 65003", distance 20, metric 0
   Tag 65002, type external
   Last update from 172.16.99.4 00:18:45 ago
   Routing Descriptor Blocks:
   * 172.16.99.4, from 172.16.99.4, 00:18:45 ago
        Route metric is 0, traffic share count is 1
        AS Hops 2
        Route tag 65002
        MPLS label: none
```

Note: From the jump host you can now try to reach the website via E_A_BIGIP and validate the path is installed via EAST DC.

Either open a web browser and browse to http://10.99.99.102 or from the jumpbox CLI, type:

```
curl http://10.99.99.102
```

Jumpbox: Curl from the jumphost to the virtual server.

Jumpbox: Traceroute from the jumphost to the virtual server to verify the path it is taking.

```
root@jumphost:~# traceroute 10.99.99.102
traceroute to 10.99.99.102 (10.99.99.102), 30 hops max, 60 byte packets
1 192.168.1.15 (192.168.1.15) 7.202 ms 8.251 ms 8.049 ms
2 172.16.99.4 (172.16.99.4) 22.485 ms 23.834 ms 36.059 ms
3 172.16.6.4 (172.16.6.4) 40.575 ms 40.425 ms 62.741 ms
4 10.99.99.102 (10.99.99.102) 64.284 ms 64.026 ms 91.206 ms
root@jumphost:~#
```

E_CPE_A_CSR1k: You can also validate from the CPE with telnet to 10.99.99.102 on port 80. Note that you can clear the telnet session by executing "clear line vty 0" on the console of the CPE:

```
csr1000v-E_CPE_A>telnet 10.99.99.102 80 /vrf internet Trying 10.99.99.102, 80 ... Open
```

csr1000v-SP_C: You can also validate via traceroute to 10.99.99.102 on SP_C:

```
csr1000v-SP_C>traceroute 10.99.99.102
Type escape sequence to abort.
Tracing the route to 10.99.99.102
VRF info: (vrf in name/id, vrf out name/id)
    1 172.16.99.4 [AS 65001] 7 msec 5 msec 9 msec
    2 172.16.6.4 [AS 65002] 10 msec 10 msec 14 msec
    3 10.99.99.102 [AS 988] 13 msec 13 msec 15 msec
csr1000v-SP_C>
```

Note: Now lets move on and configure BGP on E_B_BIGIP.....

Create an application configuration for a virtual server and a pool member on E_B_BIGIP-13:

E_B_BIGIP-13: Create the following virtual server and pool member on E_B_BIGIP-13:

```
tmsh create ltm pool pool1 members add { 10.3.99.200:80 } monitor tcp_half_open
tmsh create ltm virtual vip1 destination 10.99.99.102:80 source-address-translation {
    →type automap } pool pool1 profiles add { tcp http }
```

```
tmsh save sys config partitions all
```

E_B_BIGIP-13: Your virtual server should now show available on E_B_BIGIP-13:

Configure the route advertisement on the E_B_BIGIP-13:

E_B_BIGIP-13: Configure the eBGP session on E_B_BIGIP-13 to East CPE_A. The CPE configuration is already done for you so you only need to configure the BIG-IP side of session.

```
[root@E_B_BIGIP-13:Active:In Sync] config # imish -r 0
    E_B_BIGIP-13.local[0]>enable
    E_B_BIGIP-13.local[0]#config t
    E_B_BIGIP-13.local[0](config)#router bgp 65203
```

```
E_B_BIGIP-13.local[0](config-router)# neighbor 10.2.30.4 remote-as 65201
E_B_BIGIP-13.local[0](config-router)# neighbor 10.2.30.4 description E_CPE_A
E_B_BIGIP-13.local[0](config-router)# neighbor 10.2.30.4 timers 3 9
E_A_BIGIP-13.local[0](config-router)# end
E_A_BIGIP-13.local[0]#write mem
```

E_B_BIGIP-13: Verify eBGP adjacencies are up between E_B_BIGIP-13 and the East CPE router - E_CPE_A_CSR1k.

```
E_B_BIGIP-13.local[0]#sh ip bgp sum
BGP router identifier 10.2.50.3, local AS number 65203
BGP table version is 6
12 BGP AS-PATH entries
0 BGP community entries
Neighbor
              V
                  AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.2.30.4
              4 65201 17 14
                                      5 0 0 00:00:18
                                                                   9
                               350
10.2.50.4
              4 65205
                         385
                                         6 0
                                                   0 02:52:20
                                                                   10
Total number of neighbors 2
E_B_BIGIP-13.local[0]#
```

E_B_BIGIP-13: On E_B_BIGIP configure the following network statement for 10.99.99.0/24 such that prefix is originated locally:

```
[root@E_B_BIGIP-13:Active:Standalone] config # imish -r 0
E_B_BIGIP-13.local[0]>en
E_B_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_B_BIGIP-13.local[0](config)#router bgp 65203
E_B_BIGIP-13.local[0](config-router)#network 10.99.99.0/24
E_B_BIGIP-13.local[0](config-router)#end
E_B_BIGIP-13.local[0]#wr
Building configuration...
[OK]
E_B_BIGIP-13.local[0]#
```

E_B_BIGIP-13: On E_B_BIGIP verify 10.99.99.0/24 is being locally originated which can be seen with "Local":

```
E_B_BIGIP-13.local[0]#sh ip bgp 10.99.99.0/24 | b Local
...skipping
Local
0.0.0.0 from 0.0.0.0 (10.2.50.3)
Origin IGP, localpref 100, weight 32768, valid, sourced, local, best
Last update: Mon Jul 16 19:29:34 2018
65201 65202
10.2.30.4 from 10.2.30.4 (2.2.2.2)
Origin IGP metric 0, localpref 100, valid, external
Last update: Mon Jul 16 19:02:03 2018
65205 65202
10.2.50.4 from 10.2.50.4 (3.3.3.3)
Origin IGP metric 0, localpref 100, valid, external
Last update: Mon Jul 16 19:02:03 2018
```

E_B_BIGIP-13: On E_B_BIGIP verify 10.99.99.0/24 is being advertised outbound to East CPE device via E_CPE_A_CSR1k:

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is learning the 10.99.99.0/24 inbound from E_B_BIGIP:

Note: You can telnet to the CPE devices using the BGP neighbor IP address from Zebos using root/default for user/pass:

Example telnet from E_B_BIGIP-13 to East CPE Device @ 10.2.30.4:

```
E_B_BIGIP-13.local[0]#telnet 10.2.30.4
Trying 10.2.30.4...
Connected to 10.2.30.4.
Escape character is '^]'.
User Access Verification
Username: root
Password:
csr1000v-E_CPE_A>
```

E_CPE_A_CSR1k: Continued... Verify that E_CPE_A_CSR1k is learning the 10.99.99.0/24 inbound from E_B_BIGIP:

```
csr1000v-E_CPE_A>show ip bqp vpnv4 vrf internet neighbors 10.2.30.3 routes
BGP table version is 28, local router ID is 2.2.2.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
           r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
           x best-external, a additional-path, c RIB-compressed,
           t secondary path,
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
   Network
                    Next Hop
                                        Metric LocPrf Weight Path
Route Distinguisher: 65201:1000 (default for vrf internet)
                                                            0 65203 65205 i
*m 3.3.3.3/32
                     10.2.30.3
                                     4294967295
    10.99.99.0/24
                     10.2.30.3
                                     4294967295
                                                            0 65203 i
*m
Total number of prefixes 2
```

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is installing 10.99.99.0/24 from E_B_BIGIP using ip route command. Notice the next hop of E_A_BIGIP @ 10.2.20.3 & E_B_BIGIP @ 10.2.30.3:

```
csr1000v-E_CPE_A>sh ip route vrf internet
Routing Table: internet
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
```

```
Gateway of last resort is not set
   1.0.0.0/32 is subnetted, 2 subnets
         1.1.1.1 [20/4294967294] via 172.16.6.3, 23:39:09
В
         1.1.1.2 [20/4294967294] via 172.16.6.3, 23:39:11
В
   3.0.0.0/32 is subnetted, 1 subnets
         3.3.3.3 [20/4294967294] via 10.2.30.3, 00:37:06
В
                [20/4294967294] via 10.2.20.3, 00:37:06
   10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
С
         10.2.20.0/24 is directly connected, GigabitEthernet2
L
         10.2.20.4/32 is directly connected, GigabitEthernet2
С
         10.2.30.0/24 is directly connected, GigabitEthernet3
         10.2.30.4/32 is directly connected, GigabitEthernet3
L
         10.99.99.0/24 [20/4294967294] via 10.2.30.3, 00:34:33
В
                    [20/4294967294] via 10.2.20.3, 00:34:33
   99.0.0.0/24 is subnetted, 1 subnets
В
         99.99.99.0 [20/4294967294] via 172.16.6.3, 23:40:38
   172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks
В
         172.16.1.0/24 [20/4294967294] via 172.16.6.3, 23:39:19
         172.16.2.0/24 [20/4294967294] via 172.16.6.3, 23:39:19
В
С
         172.16.6.0/24 is directly connected, GigabitEthernet5
T.
         172.16.6.4/32 is directly connected, GigabitEthernet5
         172.16.99.0/24 [20/0] via 172.16.6.3, 23:40:38
В
```

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is now installing specific 10.99.99.0/24 from E_B_BIGIP using specific ip route command. Notice the next hop of E_A_BIGIP @ 10.2.20.3 & E_B_BIGIP @ 10.2.30.3:

csr1000v-E_CPE_A>sh ip route vrf internet 10.99.99.0 255.255.255.0 Routing Table: internet Routing entry for 10.99.99.0/24 Known via "bgp 65201", distance 20, metric 4294967294 Tag 65202, type external Last update from 10.2.20.3 00:39:40 ago Routing Descriptor Blocks: * 10.2.30.3, from 10.2.30.3, 00:39:40 ago Route metric is 4294967294, traffic share count is 1 AS Hops 1 Route tag 65202 MPLS label: none 10.2.20.3, from 10.2.20.3, 00:39:40 ago Route metric is 4294967294, traffic share count is 1 AS Hops 1 Route tag 65202 MPLS label: none csr1000v-E CPE A>

Note: Congratulations! You now have eBGP Multipath Loadsharing working within the East DC! As seen above, this will trigger ECMP for 10.99.99.0/24 on E_CPE_A_CSR1k towards E_A_BIGIP and E_B_BIGIP. Note that normally the weight, local preference, AS path length, origin, med, etc. would need to be the same for the parallel routes to be installed in the routing table.

It is worth noting that this behavior various from version to version of IOS. In this lab, we are using IOS-XE Version 16.3.6. With this version, the entire AS path needs to be the same for multipath condition to be met.

How did we work around this? The following hidden command is used on the CPE to ignore the different AS Path and install the route as multipath if all other conditions are met:

```
csr1000v-E_CPE_A#sh run | i as-path
bgp bestpath as-path multipath-relax
csr1000v-E_CPE_A#
```

csr1000v-SP_C: Verify that nothing changed on csr1000v-SP_C and it is still installing 10.99.99.0/24 via East DC because Origin attribute is IGP versus incomplete for West DC:

csr1000v-SP_C: Verify that csr1000v-SP_C is installing 10.99.99.0/24 in BGP table via East DC. Recall the Best path leveraging EAST DC is via AS 65002 988.

```
csr1000v-SP_C>sh ip bgp 10.99.99.0/24
BGP routing table entry for 10.99.99.0/24, version 16
Paths: (2 available, best #1, table default)
Advertised to update-groups:
    1
    Refresh Epoch 1
    65002 988
172.16.99.4 from 172.16.99.4 (172.1.1.2)
    Origin IGP, localpref 100, valid, external, best
    rx pathid: 0, tx pathid: 0x0
Refresh Epoch 1
    65001 65101, (aggregated by 65101 192.168.255.10)
172.16.99.3 from 172.16.99.3 (172.1.1)
    Origin incomplete, localpref 100, valid, external, atomic-aggregate
    rx pathid: 0, tx pathid: 0
```

csr1000v-SP_C: Verify that csr1000v-SP_C is installing 10.99.99.0/24 in the ip routing table:

```
csr1000v-SP_C>sh ip route 10.99.99.0 255.255.255.0
Routing entry for 10.99.99.0/24
Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:18:45 ago
Routing Descriptor Blocks:
 * 172.16.99.4, from 172.16.99.4, 00:18:45 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none
```

Note: As seen above, all traffic from the Jumpbox via SP_C destined to 10.99.99.0/24 is currently via the East DC. This is because EAST DC wins the tiebreaker as the Origin attribute is IGP versus incomplete for West DC

At this moment, you can only curl to 10.99.99.102 VIP in the EAST DC via the jumpbox.

Place E_A_BIGIP into maintenance mode within the East DC by using BGP AS Path Prepending:

E_A_BIGIP-13: Create AS-Path-Prepend-OUT route-map on E_A_BIGIP for 10.99.99.0/24 to insert 1 AS Path prepend into the prefix:

[root@E_A_BIGIP-13:Active:Standalone] config # imish -r 0 E_A_BIGIP-13.local[0]>en E A BIGIP-13.local[0]#conf t Enter configuration commands, one per line. End with CNTL/Z. E_A_BIGIP-13.local[0](config)# E_A_BIGIP-13.local[0](config)#ip prefix-list as-path-prepend-prefix seq 10 permit 10. →99.99.0/24 E_A_BIGIP-13.local[0](config)# E_A_BIGIP-13.local[0](config)#route-map AS-Path-Prepend-OUT permit 100 E_A_BIGIP-13.local[0](config-route-map)# match ip address prefix-list as-path-prepend-⇔prefix E_A_BIGIP-13.local[0](config-route-map)# set as-path prepend 988 E_A_BIGIP-13.local[0](config-route-map)#! E_A_BIGIP-13.local[0](config-route-map)#route-map AS-Path-Prepend-OUT permit 200 E_A_BIGIP-13.local[0](config-route-map)#! E_A_BIGIP-13.local[0] (config-route-map) #router bgp 65202 E_A_BIGIP-13.local[0](config-router)#nei 10.2.20.4 route-map AS-Path-Prepend-OUT out E_A_BIGIP-13.local[0] (config-router) #end E_A_BIGIP-13.local[0]# E_A_BIGIP-13.local[0]#clear ip bgp *

E_A_BIGIP-13: Verify AS-Path-Prepend-OUT has inserted 1 AS Path prepend into the prefix towards CPE @ 10.2.20.4:

E_CPE_A_CSR1k: Verify AS-Path-Prepending inbound on E_CPE_A for 10.99.99.0/24 from E_A_BIGIP:

```
csr1000v-E_CPE_A>show ip bgp vpnv4 vrf internet neighbors 10.2.20.3 routes
BGP table version is 56, local router ID is 2.2.2.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
                r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
                x best-external, a additional-path, c RIB-compressed,
                t secondary path,
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
       Network
                        Next Hop
                                            Metric LocPrf Weight Path
Route Distinguisher: 65201:1000 (default for vrf internet)
                                         4294967295
                         10.2.20.3
                                                                 0 65202 65205 i
        3.3.3.3/32
    *>
                                                                 0 65202 988 i
        10.99.99.0/24
                         10.2.20.3
                                         4294967295
    *
```

E_CPE_A_CSR1k: Verify that E_A_BIGIP is no longer an installed route or preferred in BGP RIB for 10.99.99.0/24 on E_CPE_A. You will Note that the next hop for 10.99.99.0/24 is E_B_BIGIP @ 10.2.30.3 and not E_A_BIGIP @ 10.2.20.3.

```
csr1000v-E_CPE_A>sh ip route vrf internet
Routing Table: internet
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
a - application route
```

```
+ - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
     1.0.0.0/32 is subnetted, 2 subnets
        1.1.1.1 [20/4294967294] via 172.16.6.3, 1d01h
В
         1.1.1.2 [20/4294967294] via 172.16.6.3, 1d01h
В
      3.0.0/32 is subnetted, 1 subnets
В
         3.3.3.3 [20/4294967294] via 10.2.30.3, 00:05:07
                 [20/4294967294] via 10.2.20.3, 00:05:07
      10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
         10.2.20.0/24 is directly connected, GigabitEthernet2
С
         10.2.20.4/32 is directly connected, GigabitEthernet2
L
         10.2.30.0/24 is directly connected, GigabitEthernet3
С
         10.2.30.4/32 is directly connected, GigabitEthernet3
T.
         10.99.99.0/24 [20/4294967294] via 10.2.30.3, 00:05:11
В
      99.0.0.0/24 is subnetted, 1 subnets
         99.99.99.0 [20/4294967294] via 172.16.6.3, 1d01h
В
      172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks
В
         172.16.1.0/24 [20/4294967294] via 172.16.6.3, 1d01h
        172.16.2.0/24 [20/4294967294] via 172.16.6.3, 1d01h
В
         172.16.6.0/24 is directly connected, GigabitEthernet5
С
T.
         172.16.6.4/32 is directly connected, GigabitEthernet5
         172.16.99.0/24 [20/0] via 172.16.6.3, 1d01h
В
csr1000v-E_CPE_A>
```

Note: Congratulations! E_A_BIGIP has successfully been placed in maintenance mode within the East DC and is no longer taking any traffic. This was achieved by inserting the additional AS Path prepend in the previous step eliminating this as a candidate for BGP multipath selection on E_CPE_A. Let's continue with additional validation.

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is now installing specific 10.99.99.0/24 from E_B_BIGIP using specific ip route command. Notice the next hop of E_B_BIGIP @ 10.2.30.3:

```
csr1000v-E_CPE_A>sh ip route vrf internet 10.99.99.0 255.255.255.0
Routing Table: internet
Routing entry for 10.99.99.0/24
Known via "bgp 65201", distance 20, metric 4294967294
Tag 65203, type external
Last update from 10.2.30.3 00:00:24 ago
Routing Descriptor Blocks:
* 10.2.30.3, from 10.2.30.3, 00:00:24 ago
Route metric is 4294967294, traffic share count is 1
AS Hops 1
Route tag 65203
MPLS label: none
```

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is now installing specific 10.99.99.0/24 from E_B_BIGIP using specific ip bgp command. Notice the best path is via E_B_BIGIP @ 10.2.30.3 due to AS Path length:

```
csr1000v-E_CPE_A>show ip bgp vpnv4 vrf internet 10.99.99.0
BGP routing table entry for 65201:1000:10.99.99.0/24, version 53
BGP Bestpath: deterministic-med: aigp-ignore: med
Paths: (2 available, best #1, table internet)
```

```
Multipath: eiBGP
   Advertised to update-groups:
       3
                  4
   Refresh Epoch 1
   65203
   10.2.30.3 (via vrf internet) from 10.2.30.3 (10.2.50.3)
       Origin IGP, metric 4294967295, localpref 100, valid, external, best
       Extended Community: RT:65201:1000
       rx pathid: 0, tx pathid: 0x0
   Refresh Epoch 1
   65202 988
   10.2.20.3 (via vrf internet) from 10.2.20.3 (10.2.40.3)
       Origin IGP, metric 4294967295, localpref 100, valid, external
       Extended Community: RT:65201:1000
       rx pathid: 0, tx pathid: 0
```

csr1000v-SP_C: Verify path via Virtual Server 10.99.99.102 is still up via East DC @ E_B_BIGIP now that E_A_BIGIP is in maintenance mode within East DC:

```
csr1000v-SP_C>traceroute 10.99.99.102
Type escape sequence to abort.
Tracing the route to 10.99.99.102
VRF info: (vrf in name/id, vrf out name/id)
    1 172.16.99.4 [AS 65001] 7 msec 7 msec 8 msec
    2 172.16.6.4 [AS 65002] 12 msec 14 msec 14 msec
    3 10.99.99.102 [AS 988] 18 msec 12 msec 13 msec
csr1000v-SP_C>
```

Reminder: You can telnet to csr1000v-SP_C from the jumpbox @ 192.168.1.15 with root/default user/pass:

```
ubuntu@jumphost:~$ telnet 192.168.1.15
Trying 192.168.1.15...
Connected to 192.168.1.15.
Escape character is '^]'.
User Access Verification
Username: root
Password:
csr1000v-SP_C>
```

Jumpbox: Verify curl to Virtual Server 10.99.99.102 is still up via East DC @ E_B_BIGIP:

```
root@jumphost:~# curl 10.99.99.102
<html><body><hl>It works!</hl>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
```

Jumpbox: Verify traceroute to Virtual Server 10.99.99.102 is still up via East DC @ E_B_BIGIP:

```
root@jumphost:~# traceroute 10.99.99.102
traceroute to 10.99.99.102 (10.99.99.102), 30 hops max, 60 byte packets
1 192.168.1.15 (192.168.1.15) 13.403 ms 13.047 ms 12.418 ms
2 172.16.99.4 (172.16.99.4) 12.830 ms 12.649 ms 12.351 ms
3 172.16.6.4 (172.16.6.4) 31.121 ms 44.958 ms 44.866 ms
```

```
4 10.99.99.102 (10.99.99.102) 44.458 ms 45.634 ms 60.454 ms root@jumphost:~#
```

Note: Now that E_A_BIGIP is in maintenance mode we only have E_B_BIGIP taking all the traffic within the East DC for Virtual Servers on 10.99.99.0/24 via SP C.

Let's also match AS Path Prepending on E_B_BIGIP such that both East BIG IP's have been added to maintenance mode and are no longer taking any traffic via SP_C.

This is because the AS Path will be longer via East DC as compared to West DC after we make the next set of changes.

Create AS-Path-Prepend-OUT route-map on E_B_BIGIP for 10.99.99.0/24 to insert 1 AS Path prepend into the prefix:

E_B_BIGIP-13: Create AS-Path-Prepend-OUT route-map on E_B_BIGIP for 10.99.99.0/24 to insert 1 AS Path prepend into the prefix:

```
[root@E_B_BIGIP-13:Active:Standalone] config # imish -r 0
E_B_BIGIP-13.local[0]>en
E_B_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_B_BIGIP-13.local[0](config)#ip prefix-list as-path-prepend-prefix seq 10 permit 10.
→99.99.0/24
E_B_BIGIP-13.local[0](config)#
E_B_BIGIP-13.local[0] (config) #route-map AS-Path-Prepend-OUT permit 100
E_B_BIGIP-13.local[0](config-route-map)# match ip address prefix-list as-path-prepend-
→prefix
E_B_BIGIP-13.local[0](config-route-map)# set as-path prepend 988
E_B_BIGIP-13.local[0](config-route-map)#route-map AS-Path-Prepend-OUT permit 200
E_B_BIGIP-13.local[0] (config-route-map) #router bgp 65203
E_B_BIGIP-13.local[0](config-router)#neighbor 10.2.30.4 route-map AS-Path-Prepend-OUT_
-→out
E_B_BIGIP-13.local[0] (config-router) #end
E_B_BIGIP-13.local[0]#wr
E_B_BIGIP-13.local[0]#clear ip bgp *
```

E_B_BIGIP-13: Verify AS-Path-Prepend-OUT has inserted 1 AS Path prepend into the prefix towards CPE @ 10.2.30.4:

E_B_BIGIP-13.local[0]#sh ip bgp nei 10.2.30.4 advertised-routes | i 10.99.99.0/24 *> 10.99.99.0/24 10.2.30.3 100 32768 988 i

E_CPE_A_CSR1k: Verify AS-Path-Prepending inbound on E_CPE_A for 10.99.99.0/24 from E_B_BIGIP.

```
Route Distinguisher: 65201:1000 (default for vrf internet)

*m 3.3.3.3/32 10.2.30.3 4294967295 0 65203 65205 i

*m 10.99.99.0/24 10.2.30.3 4294967295 0 65203 988 i

Total number of prefixes 2
```

Note: You will also notice the '*m*' notation has been restored above. This means the prefixes are selected for multipath since we have equalized the previous AS Path prepend configured on E_A_BIGIP.

Let's move along...

E_CPE_A_CSR1k: Verify that both E_A_BIGIP & E_B_BIGIP is now valid again for 10.99.99.0/24 on E_CPE_A. You will Note that the next hop for 10.99.99.0/24 is both E_A_BIGIP @ 10.2.20.3 and E_B_BIGIP @ 10.2.30.3

```
csr1000v-E_CPE_A>sh ip route vrf internet
Routing Table: internet
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
       a - application route
       + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
      1.0.0/32 is subnetted, 2 subnets
В
        1.1.1.1 [20/4294967294] via 172.16.6.3, 1d01h
В
         1.1.1.2 [20/4294967294] via 172.16.6.3, 1d01h
      3.0.0.0/32 is subnetted, 1 subnets
В
         3.3.3.3 [20/4294967294] via 10.2.30.3, 00:08:00
                 [20/4294967294] via 10.2.20.3, 00:08:00
      10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
С
         10.2.20.0/24 is directly connected, GigabitEthernet2
T.
         10.2.20.4/32 is directly connected, GigabitEthernet2
С
         10.2.30.0/24 is directly connected, GigabitEthernet3
         10.2.30.4/32 is directly connected, GigabitEthernet3
Τ.
         10.99.99.0/24 [20/4294967294] via 10.2.30.3, 00:07:57
В
                       [20/4294967294] via 10.2.20.3, 00:07:57
      99.0.0/24 is subnetted, 1 subnets
         99.99.99.0 [20/4294967294] via 172.16.6.3, 1d01h
В
      172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks
         172.16.1.0/24 [20/4294967294] via 172.16.6.3, 1d01h
В
         172.16.2.0/24 [20/4294967294] via 172.16.6.3, 1d01h
B
С
         172.16.6.0/24 is directly connected, GigabitEthernet5
L
         172.16.6.4/32 is directly connected, GigabitEthernet5
        172.16.99.0/24 [20/0] via 172.16.6.3, 1d01h
B
csr1000v-E CPE A>
```

Note: Congratulations! E_B_BIGIP has successfully been placed in maintenance mode within the East DC and is no longer taking any traffic. This was achieved by inserting the additional AS Path prepend in the

previous step eliminating this as a candidate for BGP multipath selection on E_CPE_A.

Now the entire East DC is in maintenance mode as both E_A_BIGIP and E_B_BIGIP are no longer taking traffic.

That is, 10.99.99.0/24 is preferred via the West DC from the jumpbox when leveraging SP_C. Let's continue with additional validation.

E_CPE_A_CSR1k: We can observe that prepending is happening for 10.99.99.0/24 on E_CPE_A for both E_A_BIGIP & E_B_BIGIP:

```
csr1000v-E_CPE_A>show ip bgp vpnv4 vrf internet | i 988*m 10.99.99.0/2410.2.30.342949672950 65203 988 i*>10.2.20.342949672950 65202 988 i
```

csr1000v-SP_C: Verify 10.99.99.0/24 is available on SP_C BGP RIB table via East DC. You will notice the best path is via West DC via AS 65101.

Reminder: You can telnet to csr1000v-SP_C from the jumpbox @ 192.168.1.15 with root/default user/pass:

```
csr1000v-SP_C>sh ip bgp 10.99.99.100/24
BGP routing table entry for 10.99.99.0/24, version 25
Paths: (2 available, best #2, table default)
Advertised to update-groups:
    1
    Refresh Epoch 1
    65002 988 988
172.16.99.4 from 172.16.99.4 (172.1.1.2)
    Origin IGP, localpref 100, valid, external
    rx pathid: 0, tx pathid: 0
Refresh Epoch 1
    65001 65101, (aggregated by 65101 192.168.255.10)
172.16.99.3 from 172.16.99.3 (172.1.1.1)
    Origin incomplete, localpref 100, valid, external, atomic-aggregate, best
    rx pathid: 0, tx pathid: 0x0
```

csr1000v-SP_C: Verify 10.99.99.0/24 is no longer installed on SP_C IP routing table via East DC. You will notice the route installed is via West DC via AS 65001.

```
csr1000v-SP_C>sh ip route 10.99.99.100
Routing entry for 10.99.99.0/24
Known via "bgp 65003", distance 20, metric 0
Tag 65001, type external
Last update from 172.16.99.3 00:07:29 ago
Routing Descriptor Blocks:
* 172.16.99.3, from 172.16.99.3, 00:07:29 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65001
MPLS label: none
```

Note: This prefix is no longer installed in the routing table via East DC because the AS Path length is larger than that of West DC. At this point traffic is now via West DC for 10.99.99.0/24 from SP_C point-of-view.

csr1000v-SP_C: Verify path via Virtual Server 10.99.99.101 is now via West DC - AS 65101. Note that below output may not be an exact match as this can be via either 172.16.1.4 or 172.16.2.4 leveraging AS 65101 via West_CPE_A or West_CPE_B.

```
csr1000v-SP_C>traceroute 10.99.99.101
Type escape sequence to abort.
Tracing the route to 10.99.99.101
VRF info: (vrf in name/id, vrf out name/id)
    1 172.16.99.3 [AS 65001] 8 msec 8 msec 7 msec
    2 172.16.1.4 [AS 65001] 11 msec 8 msec 10 msec
    3 10.99.99.101 [AS 65101] 14 msec 13 msec 15 msec
csr1000v-SP_C>
```

Jumpbox: Verify curl to Virtual Server 10.99.99.101 is up via West DC:

```
root@jumphost:~# curl 10.99.99.101
<html><body><hl>It works!</hl>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
root@jumphost:~#
```

Jumpbox: Verify traceroute to Virtual Server 10.99.99.101 is West DC. Note that below output may not be an exact match as this can be via either 172.16.1.4 or 172.16.2.4 leveraging AS 65101 via West_CPE_A or West_CPE_B.

```
root@jumphost:~# traceroute 10.99.99.101
traceroute to 10.99.99.101 (10.99.99.101), 30 hops max, 60 byte packets
    1 192.168.1.15 (192.168.1.15) 2.504 ms 15.470 ms 15.277 ms
    2 172.16.99.3 (172.16.99.3) 18.709 ms 19.369 ms 19.762 ms
    3 172.16.2.4 (172.16.2.4) 25.569 ms 28.738 ms 44.922 ms
    4 10.99.99.101 (10.99.99.101) 44.591 ms 47.980 ms 51.598 ms
root@jumphost:~#
```

Anycast DC Failover section - Swing Traffic back to East DC by adding 2 x /25 specific routes which comprise of the overall 10.99.99.0 /24

Note: In previous section we verified that 10.99.99.0/24 is only installed in the IP Routing table of SP_C via West DC. However, East DC is available as backup path in BGP RIB.

In this section we will swing traffic back to East DC by utilizing 2 x /25's.

E_A_BIGIP-13: Configure BGP on E_A_BIGIP-13 to originate 10.99.99.0 /25 and 10.99.99.128 /25:

```
[root@E_A_BIGIP-13:Active:Standalone] config # imish -r 0
E_A_BIGIP-13.local[0]>en
E_A_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_A_BIGIP-13.local[0](config)#router bgp 65202
E_A_BIGIP-13.local[0](config-router)#network 10.99.99.0/25
E_A_BIGIP-13.local[0](config-router)#network 10.99.99.128/25
E_A_BIGIP-13.local[0](config)#end
E_A_BIGIP-13.local[0]#clear ip bgp *
E_A_BIGIP-13.local[0]#wr
Building configuration...
```

E_A_BIGIP-13: Verify 10.99.99.0/24, 10.99.99.0/25, and 10.99.99.128/25 are advertised via E_A_BIGIP to E_CPE_A @ 10.2.20.4:

```
E_A_BIGIP-13.local[0]#sh ip bgp nei 10.2.20.4 ad
BGP table version is 2, local router ID is 10.2.40.3
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
                                                              Weight Path
   Network
                    Next Hop
                                        Metric
                                                   LocPrf
*> 3.3.3.3/32
                  10.2.20.3
                                                                  0 65205 i
*> 10.3.99.0/24
                  10.2.20.3
                                                                  0 65205 i
*> 10.99.99.0/24
                 10.2.20.3
                                                     100
                                                              32768 988 i
*> 10.99.99.0/25 10.2.20.3
                                                     100
                                                              32768 i
*> 10.99.99.128/25 10.2.20.3
                                                              32768 i
                                                     100
Total number of prefixes 5
```

csr1000v-SP_C: Verify 10.99.99.0/25 is available on SP_C BGP RIB table via East DC leveraging 10.99.99.0 /25. You will notice the best path is via East DC via AS 65002 988.

Reminder: You can telnet to csr1000v-SP_C from the jumpbox @ 192.168.1.15 with root/default user/pass.

csr1000v-SP_C: Let's also verify 10.99.99.0/25

csr1000v-SP_C: Verify 10.99.99.102 is installed on SP_C IP routing table via East DC leveraging 10.99.99.0/25. You will notice the route installed is via East DC via AS 65002.

csr1000v-SP_C>sh ip route 10.99.99.102 Routing entry for 10.99.99.0/25

```
Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:03:10 ago
Routing Descriptor Blocks:
* 172.16.99.4, from 172.16.99.4, 00:03:10 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none
```

Note: You will observe that the IP Routing table of SP_C will prefer the path via East DC for the 10.99.99.102 Virtual Server due longest match of 10.99.99.0/25 even though 10.99.99.0/24 is via West DC.

We can expect the same behavior with 10.99.99.128 /25. Let's validate.

csr1000v-SP_C: Verify 10.99.99.128 /25 is available on SP_C IP BGP RIB table via East DC. You will notice the best path is via East DC via AS 65002 988.

csr1000v-SP_C: Verify 10.99.99.128 /25 is installed on SP_C IP routing table via East DC leveraging 10.99.99.128 /25. You will notice the route installed is via East DC via AS 65002.

```
csr1000v-SP_C>sh ip route 10.99.99.128 255.255.255.128
Routing entry for 10.99.99.128/25
Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:03:16 ago
Routing Descriptor Blocks:
 * 172.16.99.4, from 172.16.99.4, 00:03:16 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none
```

Note: What observations are made with 10.99.99.0/24? You will notice this remains the same with West DC preferred via AS Path length for 10.99.99.0/24.

csr1000v-SP_C: Verify 10.99.99.0 /24 is available on SP_C BGP RIB table via West DC. You will notice the

best path is via West DC via AS 65101.

```
csr1000v-SP_C>sh ip bgp 10.99.99.0/24
BGP routing table entry for 10.99.99.0/24, version 25
Paths: (2 available, best #2, table default)
Advertised to update-groups:
    1
    Refresh Epoch 1
    65002 988 988
172.16.99.4 from 172.16.99.4 (172.1.1.2)
    Origin IGP, localpref 100, valid, external
    rx pathid: 0, tx pathid: 0
Refresh Epoch 1
    65001 65101, (aggregated by 65101 192.168.255.10)
172.16.99.3 from 172.16.99.3 (172.1.1.1)
    Origin incomplete, localpref 100, valid, external, atomic-aggregate, best
    rx pathid: 0, tx pathid: 0x0
```

csr1000v-SP_C: Verify 10.99.99.0 /24 is available on SP_C IP routing table via West DC. You will notice the best path is via West DC via AS 65001.

```
csr1000v-SP_C>sh ip route 10.99.99.0 255.255.255.0
Routing entry for 10.99.99.0/24
Known via "bgp 65003", distance 20, metric 0
Tag 65001, type external
Last update from 172.16.99.3 01:00:50 ago
Routing Descriptor Blocks:
* 172.16.99.3, from 172.16.99.3, 01:00:50 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65001
MPLS label: none
```

csr1000v-SP_C: Verify path via Virtual Server 10.99.99.102 is now via East DC due to the /25's being originated from East DC via E_A_BIGIP-13.

```
csr1000v-SP_C>traceroute 10.99.99.102
Type escape sequence to abort.
Tracing the route to 10.99.99.102
VRF info: (vrf in name/id, vrf out name/id)
        1 172.16.99.4 [AS 65001] 7 msec 6 msec 8 msec
        2 172.16.6.4 [AS 65002] 9 msec 12 msec 10 msec
        3 10.99.99.102 [AS 988] 17 msec 21 msec 16 msec
csr1000v-SP_C>
```

Jumpbox: Verify curl to Virtual Server 10.99.99.102 is up via East DC:

```
root@jumphost:~# curl 10.99.99.102
<html><body><hl>It works!</hl>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
root@jumphost:~#
```

Jumpbox: Verify traceroute to Virtual Server 10.99.99.102 is East DC.

```
root@jumphost:~# traceroute 10.99.99.102
traceroute to 10.99.99.102 (10.99.99.102), 30 hops max, 60 byte packets
```

```
1 192.168.1.15 (192.168.1.15) 14.200 ms 14.073 ms 13.654 ms
2 172.16.99.4 (172.16.99.4) 21.305 ms 27.179 ms 27.071 ms
3 172.16.6.4 (172.16.6.4) 26.755 ms 26.447 ms 26.119 ms
4 10.99.99.102 (10.99.99.102) 36.549 ms 48.875 ms 48.795 ms
root@jumphost:~#
```

Note: Congratulations! You have successfully swing traffic back to the East DC even though 10.99.99.0/24 is currently preferred via West DC from SP_C. This was accomplished by introducing specific /25's from the East DC via E A BIGIP-13.

Let's finish this off as you are in the home stretch! We will finish the East DC by originating the same /25's on E_B_BIGIP-13 for consistency with E_A_BIGIP-13.

Re-introduce E_B_BIGIP-13 in the East DC via the /25's:

In this section we will finish the configuration on the East DC to originate the 2 x /25's on E_B_BIGIP-13. This will match the origination of 2 x 25's previously completed on E_A_BIGIP-13.

E_B_BIGIP-13: Configure BGP on E_B_BIGIP-13 to originate 10.99.99.0 /25 and 10.99.99.128 /25:

```
[root@E_B_BIGIP-13:Active:Standalone] config # imish -r 0
E_B_BIGIP-13.local[0]>enE_B_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_B_BIGIP-13.local[0](config)#router bgp 65203
E_B_BIGIP-13.local[0](config-router)#network 10.99.99.0/25
E_B_BIGIP-13.local[0](config-router)#network 10.99.99.128/25
E_B_BIGIP-13.local[0](config)#end
E_B_BIGIP-13.local[0]#clear ip bgp *
E_B_BIGIP-13.local[0]#wr
Building configuration...
```

E_B_BIGIP-13: Verify 10.99.99.0/24, 10.99.99.0/25, and 10.99.99.128/25 are advertised via E_B_BIGIP to E_CPE_A @ 10.2.30.4:

```
E_B_BIGIP-13.local[0]#sh ip bgp nei 10.2.30.4 advertised-routes
BGP table version is 9, local router ID is 10.2.50.3
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
                    Next Hop
                                        Metric
                                                   LocPrf
                                                              Weight Path
   Network
                                                                 0 65205 i
*> 3.3.3.3/32
                   10.2.30.3
*> 10.3.99.0/24
                  10.2.30.3
                                                                  0 65205 i
*> 10.99.99.0/24 10.2.30.3
                                                     100
                                                              32768 988 i
*> 10.99.99.0/25
                   10.2.30.3
                                                     100
                                                              32768 i
*> 10.99.99.128/25 10.2.30.3
                                                     100
                                                              32768 i
```

E_CPE_A_CSR1k: Verify that 10.99.99.0/24, 10.99.99.0/24, and 10.99.99.128/25 are learned via the routing table on E_CPE_A from both E_A_BIGIP @ 10.2.20.3 and E_B_BIGIP @ 10.2.30.3

```
csr1000v-E_CPE_A>sh ip route vrf internet
Routing Table: internet
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
```

```
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
   E1 - OSPF external type 1, E2 - OSPF external type 2
    i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
   ia - IS-IS inter area, * - candidate default, U - per-user static route
   o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
   a - application route
    + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
    1.0.0/32 is subnetted, 2 subnets
В
         1.1.1.1 [20/4294967294] via 172.16.6.3, 1d02h
В
         1.1.1.2 [20/4294967294] via 172.16.6.3, 1d02h
    3.0.0/32 is subnetted, 1 subnets
         3.3.3.3 [20/4294967294] via 10.2.30.3, 00:04:59
В
                [20/4294967294] via 10.2.20.3, 00:04:59
   10.0.0.0/8 is variably subnetted, 7 subnets, 3 masks
         10.2.20.0/24 is directly connected, GigabitEthernet2
С
         10.2.20.4/32 is directly connected, GigabitEthernet2
T.
С
         10.2.30.0/24 is directly connected, GigabitEthernet3
         10.2.30.4/32 is directly connected, GigabitEthernet3
T.
         10.99.99.0/24 [20/4294967294] via 10.2.30.3, 00:05:20
В
                    [20/4294967294] via 10.2.20.3, 00:05:20
         10.99.99.0/25 [20/4294967294] via 10.2.30.3, 00:05:28
В
                    [20/4294967294] via 10.2.20.3, 00:05:28
В
         10.99.99.128/25 [20/4294967294] via 10.2.30.3, 00:05:28
                        [20/4294967294] via 10.2.20.3, 00:05:28
   99.0.0.0/24 is subnetted, 1 subnets
         99.99.99.0 [20/4294967294] via 172.16.6.3, 1d03h
В
   172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks
         172.16.1.0/24 [20/4294967294] via 172.16.6.3, 1d02h
В
         172.16.2.0/24 [20/4294967294] via 172.16.6.3, 1d02h
В
С
         172.16.6.0/24 is directly connected, GigabitEthernet5
         172.16.6.4/32 is directly connected, GigabitEthernet5
L
В
         172.16.99.0/24 [20/0] via 172.16.6.3, 1d03h
csr1000v-E_CPE_A>
```

E_CPE_A_CSR1k: As an example, let's take a closer look the bgp table for 10.99.99.128/25 on E_CPE_A:

```
csr1000v-E_CPE_A>sh ip bgp vpnv4 vrf internet 10.99.99.128/25
BGP routing table entry for 65201:1000:10.99.99.128/25, version 98
BGP Bestpath: deterministic-med: aigp-ignore: med
Paths: (2 available, best #1, table internet)
Multipath: eiBGP
   Advertised to update-groups:
       3
                  4
   Refresh Epoch 1
    65202
   10.2.20.3 (via vrf internet) from 10.2.20.3 (10.2.40.3)
        Origin IGP, metric 4294967295, localpref 100, valid, external, multipath, best
        Extended Community: RT:65201:1000
       rx pathid: 0, tx pathid: 0x0
   Refresh Epoch 1
    65203
    10.2.30.3 (via vrf internet) from 10.2.30.3 (10.2.50.3)
       Origin IGP, metric 4294967295, localpref 100, valid, external,
→multipath(oldest)
       Extended Community: RT:65201:1000
```

rx pathid: 0, tx pathid: 0

csr1000v-SP_C: Verify nothing changed w.r.t. 10.99.99.0/25 and 10.99.99.128/25 and are still in the IP Routing table of SP_C via East DC after adding the /25's on E_B_BIGIP-13.

First let's take a look at the BGP table and confirm nothing changed since we previously added the 2 x /25's on E_A_BIGIP-13 and now completed E_B_BIGIP-13.

First will be 10.99.99.0 /25:

Second will be 10.99.99.128 /25:

Last will be 10.99.99.0 /24:

```
csr1000v-SP_C>sh ip bgp 10.99.99.0 255.255.255.0
BGP routing table entry for 10.99.99.0/24, version 25
Paths: (2 available, best #2, table default)
   Advertised to update-groups:
        1
      Refresh Epoch 1
      65002 988 988
172.16.99.4 from 172.16.99.4 (172.1.1.2)
        Origin IGP, localpref 100, valid, external
        rx pathid: 0, tx pathid: 0
   Refresh Epoch 1
      65001 65101, (aggregated by 65101 192.168.255.10)
```

```
172.16.99.3 from 172.16.99.3 (172.1.1.1)
Origin incomplete, localpref 100, valid, external, atomic-aggregate, best
rx pathid: 0, tx pathid: 0x0
```

Note: You will also observe that the IP Routing table on SP_C will still prefer West DC for the 10.99.99.0/24 due to previous AS Path Prepending exercise inserted from the East DC towards SP.

csr1000v-SP_C: Now let's take a look at the ip routing table and confirm nothing has changed since we previously added the 2 x /25's on E_A_BIGIP-13 and now completed E_B_BIGIP-13.

First will be 10.99.99.0 /25

```
csr1000v-SP_C>sh ip route 10.99.99.0 255.255.255.128
Routing entry for 10.99.99.0/25
Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:19:27 ago
Routing Descriptor Blocks:
* 172.16.99.4, from 172.16.99.4, 00:19:27 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none
```

Second will be 10.99.99.128 /25

```
csr1000v-SP_C>sh ip route 10.99.99.128 255.255.255.128
Routing entry for 10.99.99.128/25
Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:19:34 ago
Routing Descriptor Blocks:
 * 172.16.99.4, from 172.16.99.4, 00:19:34 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none
```

Last will be 10.99.99.0 /24

```
csr1000v-SP_C>sh ip route 10.99.99.0 255.255.255.0
Routing entry for 10.99.99.0/24
   Known via "bgp 65003", distance 20, metric 0
   Tag 65001, type external
   Last update from 172.16.99.3 01:00:50 ago
   Routing Descriptor Blocks:
   * 172.16.99.3, from 172.16.99.3, 01:00:50 ago
        Route metric is 0, traffic share count is 1
        AS Hops 2
        Route tag 65001
        MPLS label: none
```

csr1000v-SP_C: Verify path via Virtual Server 10.99.99.102 is still via East DC with introduction of adding the /25's from East DC via both E_A_BIGIP-13 & E_B_BIGIP-13 .

```
csr1000v-SP_C>traceroute 10.99.99.102
Type escape sequence to abort.
Tracing the route to 10.99.99.102
VRF info: (vrf in name/id, vrf out name/id)
        1 172.16.99.4 [AS 65001] 7 msec 7 msec 8 msec
        2 172.16.6.4 [AS 65002] 23 msec 11 msec 11 msec
        3 10.99.99.102 [AS 988] 14 msec 16 msec 14 msec
csr1000v-SP_C>
```

Jumpbox: Verify curl to Virtual Server 10.99.99.102 is up via East DC:

```
root@jumphost:~# curl 10.99.99.102
<html><body><h1>It works!</h1>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
```

Jumpbox: Verify traceroute to Virtual Server 10.99.99.102 is East DC.

```
root@jumphost:~# traceroute 10.99.99.102
traceroute to 10.99.99.102 (10.99.99.102), 30 hops max, 60 byte packets
1 192.168.1.15 (192.168.1.15) 23.599 ms 21.587 ms 20.725 ms
2 172.16.99.4 (172.16.99.4) 25.015 ms 24.031 ms 23.148 ms
3 172.16.6.4 (172.16.6.4) 34.033 ms 33.082 ms 38.138 ms
4 10.99.99.102 (10.99.99.102) 37.173 ms 36.389 ms 53.688 ms
```

Note: Congratulations! This section is now complete and everything checks out as expected. We are now going to move on to the final step and validate with a Virtual Server on the upper /25 - 10.99.99.128 / 25.

Create an application configuration for a virtual server and a pool member on $E_A_BIGIP-13$ and $E_A_BIGIP-13$ to validate reachability via 10.99.99.128/25:

Create the following virtual server and pool member on both E_A_BIGIP-13 and E_B_BIGIP-13

```
tmsh create ltm virtual vip3 destination 10.99.99.129:80 source-address-translation {_

→type automap } pool pool1 profiles add { tcp http }
```

tmsh save sys config partitions all

E_A_BIGIP-13: Your virtual server should now show available on E_A_BIGIP-13

```
root@E_A_BIGIP-13:Active:Standalone] config # tmsh show ltm virtual vip3
------
Ltm::Virtual Server: vip3
-------
Status
Availability : available
State : enabled
Reason : The virtual server is available
CMP : enabled
CMP i enabled
CMP Mode : all-cpus
Destination : 10.99.99.129:80
```

E_B_BIGIP-13: Your virtual server should now show available on E_B_BIGIP-13

```
root@E_B_BIGIP-13:Active:Standalone] config # tmsh show ltm virtual vip3
Ltm::Virtual Server: vip3
_____
Status
 Availability
             : available
 State
             : enabled
 Reason
             : The virtual server is available
 CMP
             : enabled
 CMP Mode
             : all-cpus
 Destination
             : 10.99.99.129:80
```

Verify path via Virtual Server 10.99.99.129 which falls on 10.99.99.128/25 is via East DC with introduction of adding the /25's from East DC.

csr1000v-SP_C: Verify path via Virtual Server 10.99.99.129 which falls on 10.99.99.128/25 is via East DC with introduction of adding the /25's from East DC. You can validate via traceroute to 10.99.99.129 on SP_C:

```
csr1000v-SP_C>traceroute 10.99.99.129
Type escape sequence to abort.
Tracing the route to 10.99.99.129
VRF info: (vrf in name/id, vrf out name/id)
        1 172.16.99.4 [AS 65001] 4 msec 6 msec 5 msec
        2 172.16.6.4 [AS 65002] 7 msec 8 msec 9 msec
        3 10.99.99.129 [AS 988] 7 msec 8 msec 7 msec
csr1000v-SP_C>
```

csr1000v-SP_C: You can validate via show ip route for 10.99.99.129 on SP_C:

```
csr1000v-SP_C>sh ip route 10.99.99.129
Routing entry for 10.99.99.128/25
Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:24:58 ago
Routing Descriptor Blocks:
* 172.16.99.4, from 172.16.99.4, 00:24:58 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none
csr1000v-SP_C>
```

Jumpbox: Verify curl to Virtual Server 10.99.99.129 is up via East DC:

```
root@jumphost:~# curl 10.99.99.129
<html><body><h1>It works!</h1>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
root@jumphost:~#
```

Jumpbox: Verify traceroute to Virtual Server 10.99.99.129 is East DC.

```
2 172.16.99.4 (172.16.99.4) 23.348 ms 22.639 ms 22.585 ms
3 172.16.6.4 (172.16.6.4) 25.018 ms 24.391 ms 23.766 ms
4 10.99.99.129 (10.99.99.129) 30.824 ms 30.220 ms 39.918 ms
root@jumphost:~#
```

Note: Congratulations! You have successfully completed lab 2.

5.2.3 Lab 3: Troubleshooting

Location and content of dynamic routing log files:

For each dynamic routing protocol, the BIG-IP system logs messages to a file that pertains to the route domain in which the protocol is running. An example of the path name to a dynamic routing log file is /var/log/zebos/rd1/zebos.log file, where rd1 is the route domain of the protocol instance.

On E_A_BIGIP configure the following logging statement for BGP:

```
[root@E_A_BIGIP-13:Active:Standalone] log # imish
E_A_BIGIP-13.local[0]>enable
E_A_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_A_BIGIP-13.local[0](config)#log file /var/log/zebos/rd0/zebos.log
E_A_BIGIP-13.local[0]#wr
Building configuration...
[OK]
E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#exit
On E_A_BIGIP configure BGP debugging:
```

E_A_BIGIP-13.local[0]#deb bgp all

```
E_A_BIGIP-13.local[0]#sh debug bgp
BGP debugging status:
BGP debugging is on
BGP nht debugging is on
BGP nsm debugging is on
BGP events debugging is on
BGP keepalives debugging is on
BGP updates debugging is on
BGP fism debugging is on
BGP filter debugging is on
BGP Route Flap Dampening debugging is on
BGP Bidirectional Forwarding Detection is on
```

```
E_A_BIGIP-13.local[0]#wr
Building configuration...
[OK]
On E_A_BIGIP view BGP log messages:
```

root@(E_A_BIGIP-13)(cfq-sync Standalone)(Active)(/Common)(tmos)# quit [root@E_A_BIGIP-13:Active:Standalone] config # cd /var/log [root@E_A_BIGIP-13:Active:Standalone] log # ls | grep zebos zebos [root@E_A_BIGIP-13:Active:Standalone] log # cd zebos [root@E_A_BIGIP-13:Active:Standalone] zebos # ls rd0 [root@E_A_BIGIP-13:Active:Standalone] zebos # cd rd0 [root@E_A_BIGIP-13:Active:Standalone] rd0 # ls zebos.log [root@E_A_BIGIP-13:Active:Standalone] rd0 # more zebos.log 2018/07/09 11:49:14 informational: BGP : [NETWORK] Accept Thread: Incoming conn from, →host 10.2.20.4 (FD=11) 2018/07/09 11:49:14 informational: BGP : [NETWORK] Accept Thread: 10.2.20.4 - No such_ →Peer configured 2018/07/09 11:49:16 informational: BGP : [NETWORK] Accept Thread: Incoming conn from, →host 10.2.40.4 (FD=11) 2018/07/09 11:49:16 informational: BGP : [NETWORK] Accept Thread: 10.2.40.4 - No such, \rightarrow Peer configured 2018/07/09 11:49:21 informational: BGP : [NETWORK] Accept Thread: Incoming conn from_ →host 10.2.20.4 (FD=11) 2018/07/09 11:49:21 informational: BGP : [NETWORK] Accept Thread: 10.2.20.4 - No such_ →Peer configured 2018/07/09 11:49:26 informational: BGP : [NETWORK] Accept Thread: Incoming conn from, →host 10.2.40.4 (FD=11) 2018/07/09 11:49:26 informational: BGP : [NETWORK] Accept Thread: 10.2.40.4 - No such, → Peer configured 2018/07/09 11:49:28 informational: BGP : [RIB] Scanning BGP Network Routes... 2018/07/09 11:49:30 informational: BGP : [NETWORK] Accept Thread: Incoming conn from, →host 10.2.20.4 (FD=11) 2018/07/09 11:49:30 informational: BGP : [NETWORK] Accept Thread: 10.2.20.4 - No such_ \rightarrow Peer configured 2018/07/09 11:49:33 informational: BGP : [INIT] peer: 10.2.20.4 GR enabled for IPv4_ \rightarrow (1). 2018/07/09 11:49:33 informational: BGP : 10.2.20.4-Outgoing [FSM] State: Idle Event: →35 op_state: MASTER 2018/07/09 11:49:33 informational: BGP : 10.2.20.4-Outgoing [FSM] State: Idle Event: \rightarrow 1 op_state: MASTER 2018/07/09 11:49:36 informational: BGP : [NETWORK] Accept Thread: Incoming conn from_ →host 10.2.40.4 (FD=11) 2018/07/09 11:49:36 informational: BGP : [NETWORK] Accept Thread: 10.2.40.4 - No such_ →Peer configured

On E_A_BIGIP disable BGP debugging:

```
E_A_BIGIP-13.local[0]#undebug bgp all
E_A_BIGIP-13.local[0]#wr
Building configuration...
[OK]
```

Note: This completes Lab 3