
Agility 2018 Hands-on Lab Guide

F5 Application Delivery Controller Solutions

F5 Networks, Inc.

2

Contents:

1 Class 1: Introduction to ADC Deployments with BIG-IP LTM 5

2 Class 2: Building the F5 Fabric 25

3 Class 3: BIG-IP® Local Traffic Manager (LTM) - v13.1 Lab Guide 57

4 Class 4: Troubleshoot with tcpdump and Wireshark 107

5 Resilient Data Center Architectures with F5 BIG-IP 123

3

4

1
Class 1: Introduction to ADC Deployments with BIG-IP LTM

Welcome to the ADC Deployments with BIG-IP LTM hands-on lab session. These labs are intended to
guide you through creating basic ADC deployments and completing common administrative tasks. This
guide is intended to complement lecture material provided during the ADC Deployments with BIG-IP LTM
as well as a reference guide that can be referred to after the class.

1.1 Lab Network Setup

In the interest of focusing as much time as possible configuring your application delivery controller, we have
provided some resources and basic setup ahead of time. These are:

• Cloud-based lab environment complete with a Windows workstation, a virtual BIG-IP (VE), a virtual
BIG-IQ acting as a logging node, a virtual BIG-IQ acting as a management node, and a back-end
banking application running on a Linux web server.

• The virtual BIG-IP has been pre-licensed

If you wish to replicate these labs in your office you will need to perform these steps accordingly. Additional
lab resources are provided as illustrated in the diagram on the next page.

To access the lab environment, you will require a web browser and Remote Desktop Protocol (RDP) client
software. The web browser will be used to access the lab training portal. The RDP client will be used to
connect to a Windows workstation, where you will be able to access the BIG-IP and BIG-IQ management
interfaces (HTTPS, SSH).

You class instructor will provide additional lab access details.

5

1.1.1 Lab Diagram

1.1.2 Timing for Labs

The time it takes to perform each lab varies and is mostly dependent on accurately completing steps. This
can never be accurately predicted but we strived to derive an estimate among several people each having
a different level of experience. Below is an estimate of how long it will take for each lab:

LAB Name (Description) Time Allocated
LAB 1 – Configure Virtual Servers and Pools 35 minutes
LAB 2 – Work with SNAT, Profiles, and Monitors 45 minutes
LAB 3 – Use SSL Offload, Best Practices, and iApps 40 minutes
LAB 4 – Configure High Availability 30 minutes

1.2 Module 1: BIG-IP LTM Basic Configuration

In this module you will learn the basics of configuring BIG-IP Local Traffic Manager

1.2.1 Lab 1: Configure Virtual Servers and Pools

In this lab you will explore the BIG-IP configuration utility, create your first web application, and configure
different types of virtual servers and load balancing methods.

Task 1 – Connect to Ravello and Examine the BIG-IP Configuration Utility

1. Use a browser to access http://IP_address with the IP address supplied by your instructor, and log
in using the username and password supplied by your instructor.

6

2. For ADC Implementations with LTM click View.

3. Copy the IP address of the Windows 7 External VM, and then use RDP to access the IP address.

4. Log into the Windows workstation as external_user / password.

5. Open Chrome and click the BIGIP_A bookmark.

6. Log into the BIG-IP system as admin / admin.

7. From the left menu select Local Traffic.

The Local Traffic menu is where most ADC functions are performed.

8. From the left menu select Network.

The Network menu is where you configure elements for routing and switching.

9. From the left menu select System.

The System menu is where you configure DNS and NTP settings, manage licensing, perform software
updates, and import SSL certificates.

10. Open the Network > VLANs > VLAN List page.

Two VLANs were already created, an external VLAN for outside access, and an internal VLAN for
access to the internal network.

11. Open the Network > Self IPs > Self IP List page.

This BIG-IP system is configured with four self IP addresses. Each VLAN has a standard self IP
address (ending in .241) and a floating self IP address (ending in .240). We’ll use the floating self IP
addresses during the high availability exercise.

12. Open the Network > Routes page.

This BIG-IP system is configured with a default gateway route for outbound internet access (on
10.1.10.1).

Task 2 – Create a Basic Web Application

Examine the lab diagram on page 2. We’ll be creating a web application for an application that is stored on
three web servers (at 10.1.20.11 – 10.1.20.13).

1. Open the Local Traffic > Pools > Pool List page and click Create.

2. Use the following information for the new pool. For fields that are not specified, leave them set to the
default settings.

7

Form field Value
Name http_pool
New Members Node Name: node1 Address: 10.1.20.11 Service Port: 80 (Click Add)

Node Name: node 2 Address 10.1.20.12 Service Port: 80 (Click Add)
Node Name: node 3 Address: 10.1.20.13 Service Port: 80 (Click Add)

3. Click Finished.

4. Open the Local Traffic > Virtual Servers > Virtual Server List page and click Create.

5. Use the following information for the new virtual server, and then click Finished.

Form field Value
Name http_virtual
Destination Address/ Mask 10.1.10.20
Service Port 80
Resources > Default Pool http_pool

6. Use a new tab to access http://10.1.10.20.

7. Use Ctrl + F5 to reload the page several times.

You can see that page elements are coming from all three web servers. That’s all it takes to create a
basic web application on the BIG-IP system.

8. Close the tab.

9. In the Configuration Utility, open the Local Traffic > Pools > Statistics page.

10. Expand the http_pool by clicking on the + icon.

You use the Statistics page to identify the amount of traffic sent to the pool members. Notice that the
requests are evenly distributed across all three web servers.

11. Select the http_pool checkbox, and then click Reset.

Task 3 – Create a Forwarding Virtual Server

1. Use a new tab to attempt direct access to an internal web server at http://10.1.20.41.

Currently you are unable to access resources on the internal network from the external Windows
workstation.

8

2. Open the Start menu and type cmd, then right-click cmd.exe and select Run as administrator, and
then click Yes.

3. At the command prompt, type (or copy and paste):

route add 10.1.20.0 mask 255.255.255.0 10.1.10.241

This adds a route to the 10.1.20.0 network through the external self IP address (10.1.10.241) of the
BIG-IP system.

4. Reload the page directed at http://10.1.20.41.

The request fails again, as the BIG-IP system does not have a listener to forward this request to the
internal network.

5. In the Configuration Utility, open the Local Traffic > Virtual Servers > Virtual Server List page and
click Create.

6. Use the following information for the new virtual server, and then click Finished.

Form field Value
Name forward_virtual
Type Forwarding (IP)
Destination Address/ Mask 10.1.20.0/24
Service Port * All Ports
Protocol * All Protocols

This virtual server provides access to the 10.1.20.0/24 network on all ports and all protocols.

7. Reload the page directed at http://10.1.20.41.

The request is successful. The BIG-IP system doesn’t act as a full proxy, it simply forwards requests
to the internal network.

8. Edit the URL to https://10.1.20.32.

9. Go to Start > Remote Desktop Connection.

10. Click Show Options, then select the Display tab, then change the Display configuration to 1024 by
768.

11. Open the General tab and connect to 10.1.20.251 and log in as administrator / password.

12. On the Windows Server image go to Start > Log off.

You now have access to all ports and all protocols on the 10.1.20.0 network.

Task 4 – Create a Reject Virtual Server

1. In the Configuration Utility, on the Virtual Server List page click Create.

2. Use the following information for the new virtual server, and then click Finished.

Form field Value
Name reject_win_server
Type Reject
Destination Address/ Mask 10.1.20.251
Service Port * All Ports
Protocol * All Protocols

9

3. On the Lorax Intranet tab click Corporate Tools, and then close the tab.

4. Go to Start > Remote Desktop Connection and connect to 10.1.20.251.

Although you still have access to the 10.1.20.0 network, you no longer have access to 10.1.20.251
(the Windows Server).

5. Close the Remote Desktop Connection window.

6. In the command prompt type the following, and then close the command prompt.

route DELETE 10.1.20.0

7. In the Configuration Utility, select the forward_virtual and reject_win_server checkboxes and then
click Delete and Delete again.

Task 5 – Use Different Pool Options

1. Open the Local Traffic > Pools > Pool List page and click http_pool, and then open the Members
page.

Currently the pool is using the default load balancing method: Round Robin.

2. From the Load Balancing Method list select Ratio (member), and then click Update.

3. Examine the Current Members section.

Currently all three pool members have the same ratio value (1).

4. Click node1:80, then change the ratio value to 10, and then click Update.

5. At the top of the page click Members, then click node2:80, then change the ratio value to 5, and then
click Update

6. Click Members again and examine the Current Members section.

7. Use an incognito window to access http://10.1.10.20, then type Ctrl + F5 at least 10 times to reload
the page, and the close the page.

8. In the Configuration Utility, at the top of the page click Statistics.

Requests are now being distributed to the three pool members in a 10 – 5 – 1 ratio.

1.2.2 Lab 2: Work with SNAT, Profiles, and Monitors

In this lab you will experiment with using SNAT Auto Map for inbound requests as well as outbound requests
from internal users. You’ll also use an HTTP and stream profile to make global modifications to text within a
web site. Finally you’ll see how using health monitors ensures that you the BIG-IP knows which web servers
are available for client requests.

10

Task 1 – Use SNAT AutoMap

1. In the Configuration Utility, open the Pool List page and click Create.

2. Use the following information for the new pool, and then click Finished.

Form field Value
Name lorax_pool
New Members Address: 10.1.20.41 Service Port: 80 (Click Add)

Address 10.1.20.42 Service Port: 80 (Click Add)
Address: 10.1.20.43 Service Port: 80 (Click Add)

3. Open the Virtual Server List page and click Create.

4. Use the following information for the new virtual server, and then click Finished.

Form field Value
Name lorax_virtual
Destination Address/ Mask 10.1.10.25
Service Port 80
Resources > Default Pool lorax_pool

5. From the desktop open putty, and then connect to BIGIP_A and log in as root / default.

6. At the CLI type (or copy and paste):

tcpdump -i external port 80

7. Open a second putty session and connect to BIGIP_A.

8. At the CLI type (or copy and paste):

tcpdump -i internal port 80

9. Use a new tab to access http://10.1.10.25, and then close the tab.

The page displays as expected.

10. Examine the tcpdump windows.

On the external VLAN the communication is between the client IP address (10.1.10.199) and the
virtual server (10.1.10.25).

On the internal VLAN the communication is between the client IP address (10.1.10.199) and a back-
end web server (10.1.20.x).

11. In both tcpdump sessions press the Enter key several times to move the log entries to the top of the
window.

12. In the Ravello window, open the Windows Server console and log in as f5demo\administrator /
password.

13. In the Windows Server image, go to Start > Control Panel, then go to Network and Internet >
Network and Sharing Center, and then click Change adapter settings.

11

14. Right-click on Local Area Connection 3 and select Properties.

15. Select Internet Protocol Version 4 (TCP/IPv4) and select Properties.

Currently the Windows Server’s default gateway is configured for the BIG-IP’s internal self IP address
(10.1.20.241). The network administrator has chosen to modify the default gateway to an external
router.

16. Edit the Default gateway to 10.1.20.254, then click OK and Close.

17. On the Windows desktop, use an incognito window to access http://10.1.10.25.

The page fails to load because the web server is now sending its responses to the external router, not
the BIG-IP system.

18. Close the page, and then examine the tcpdump window.

On the external VLAN the communication is still between the client IP address (10.1.10.199) and the
virtual server (10.1.10.25).

On the internal VLAN the requests are from the client IP address to a back-end web server, however
there are no responses from the web server.

19. Press the Enter key several times to move the log entries to the top of the window.

20. In the Configuration Utility, click lorax_virtual.

21. From the Source Address Translation list select Auto Map, and then click Update.

22. Use an incognito window to access http://10.1.10.25, and then close the window.

SNAT Auto Map ensures that responses to server request are always sent back to the BIG-IP system.

23. Examine the tcpdump window.

On the external VLAN the communication is still between the client IP address (10.1.10.199) and the
virtual server (10.1.10.25).

On the internal VLAN the communication is now between the BIG-IP internal floating self IP address
(10.1.20.240) and a back-end web server (10.1.20.x).

Task 2 – Create a SNAT for Internal Resources

1. Press the Enter key several times to move the log entries to the top of the window.

2. On the Windows server, change the default gateway to 10.1.20.240 (the BIG-IP internal floating self
IP address).

3. On the Windows server, use Internet Explorer to access www.f5.com.

The request fails as the internal resource has no access to the WAN (or the Internet).

4. Close the page, then on the Windows desktop examine the tcpdump windows.

No requests are being sent to the Internet by the BIG-IP system on behalf of the internal resource.

5. In the Configuration Utility, open the Local Traffic > Address Translation > SNAT List page and
click Create.

12

6. Use the following information for the new SNAT, and then click Finished.

Form field Value
Name internal_snat
Translation IP Address: 10.1.10.100
Origin Address List
Address/Prefix Length 10.1.20.0/24 (Click Add)

7. On the Windows server, use Internet Explorer to access www.f5.com.

The internal user now has public access to the internet using the SNAT IP address of 10.1.10.100.

8. On the Windows desktop, examine the tcpdump windows.

On the external VLAN the communication is between the SNAT IP address (10.1.10.100) and the
Internet resources.

On the internal VLAN the communication is between the internal client (10.1.20.251) and the Internet
resources.

9. Close the putty sessions.

Task 3 – Use Profiles with a Virtual Server

1. Use a new tab to access http://10.1.10.25, and then select the links at the top of the page and examine
the text on each page.

The pages make several references to the company name Lorax Investments. Lorax Investments
has been acquired by Smithy Financial. Instead of updating all the web site code we’ll use profiles
on the BIG-IP system to update the web site.

2. Close the tab.

3. In the Configuration Utility, open the Local Traffic > Profiles > Other > Stream page and click Create.

4. Use the following information for the profile, and then click Finished.

Form field Value
Name name_change
Source Lorax Investments
Target Smithy Financials

5. Open the Virtual Server List page and click lorax_virtual.

6. From the Configuration list select Advanced.

7. From the HTTP Profile list select http.

8. From the Stream Profile list select name_change.

13

9. In the Acceleration section, from the HTTP Compression Profile list select httpcompression.

10. From the Web Acceleration Profile list select optimized-caching, and then click Update.

11. Use an incognito window to access http://10.1.10.25, and then select the links at the top of the page.

Although the logo need to be updated, all the text on all pages now references Smithy Financials.

Task 4 – Work with Monitors

1. Edit the URL to http://10.1.10.25/health_check.html

We’re going to use this web page to identify if the web server is up or down.

2. Close the health check page.

3. In the Configuration Utility, open the Local Traffic > Monitors page and click Create.

4. Use the following information for the monitor, and then click Finished.

Form field Value
Name lorax_monitor
Type http
Interval 4
Timeout 13
Send String GET /health_check.html\r\n
Receive String Server_Up
Receive Disable String Server_Down

5. Open the Pool List page and click lorax_pool.

6. Identify the current Availability status of the pool.

Unknown identifies when a pool or node doesn’t have a configured monitor.

7. Add lorax_monitor to the Active list and click Update.

The Availability of the pool changes to Available (Enabled).

8. Open the Local Traffic > Nodes > Node List page.

Notice that all the nodes currently display unknown.

9. Open the Local Traffic > Nodes > Default Monitor page.

10. Add gateway_icmp to the Active list and click Update.

11. Return to the Nodes >ode List page.

All nodes now display. This means that they are all sending icmp responses.

12. Open the Local Traffic > Network Map page and view the status for lorax_virtual.

The virtual server, pool, and all three pool members display available.

13. Use your mouse to hover over the pool members.

All three nodes also display available.

14

Sub-Task 1 – Take 10.1.20.41:80 Offline

1. On the Windows server go to Start > Computer, and then navigate to
C:\inetpub\wwwroot\lorax_public_site_41.

This is the directory is used for pool member 10.1.20.41:80. The health_check.html web page
currently exists on this pool member.

2. Delete health_check.html.

3. Wait 13 seconds, and then in the Configuration Utility on the Network Map page click Update Map.

4. Use your mouse to hover over the pool members.

The first pool member is offline, and all three nodes display available.

Sub-Task 2 – Disable 10.1.20.42:80

1. On the Windows server navigate to C:\inetpub\wwwroot\lorax_public_site_42.

2. Right-click health_check and select Open with > WordPad.

3. In the <p> tag, edit the text to Server_Down, and then click Save.

This file is used by pool member 10.1.20.42:80. This pool member will now match the disable string
identified in the monitor.

4. Wait 13 seconds, and then in the Configuration Utility on the Network Map page click Update Map.

The second pool member is now disabled; however, the virtual server and pool still display available.

Sub-Task 3 – Take Node 10.1.20.43 Offline

1. On the Windows server, for Local Area Connection 3 open the Internet Protocol Version 4
(TCP/IPv4) properties.

2. Click Advanced, and in the list of IP addresses scroll down to 10.1.20.43 and click Remove, then
click OK three times and then click Close.

3. Wait 13 seconds, and then in the Configuration Utility on the Network Map page, click Update Map.

4. Use your mouse to hover over the pool members.

15

The virtual server and pool display disabled but available. Node 10.1.20.43 now displays offline, which
causes pool member 10.1.20.43:80 to display offline.

Sub- Task 4 – Bring 10.1.20.42:80 Back Online

1. On the Windows server, in the health_check WordPad document, edit the text back to Server_Up,
then click Save, and then close WordPad.

2. In the Configuration Utility on the Network Map page click Update Map.

Because pool member 10.1.20.42:80 is available, the virtual server and pool once again display avail-
able.

3. Use an incognito window to access http://10.1.10.25.

The page displays, with all page elements coming from 10.1.20.42:80.

4. Close the page.

1.2.3 Lab 3: Use SSL Offload, Best Practices, and iApps

In this lab you will create an HTTPS web application and use the BIG-IP SSL offload feature to free up CPU
resources from the web servers. You’ll update the BIG-IP configuration by including some best practices.
Finally you’ll re-create the HTTPS web application by using BIG-IP iApps.

Task 1 – Use SSL Offload

1. In the Configuration Utility, open the Pool List page and click Create.

2. Use the following information for the new pool, and then click Finished.

Form field Value
Name https_pool
Health Monitors https_443
New Members Node List: node1 (10.1.20.11) Service Port: 443 (Click Add)

Node List: node2 (10.1.20.12) Service Port: 443 (Click Add)
Node List: node3 (10.1.20.13) Service Port: 443 (Click Add)

3. Open the Virtual Server List page and click Create.

4. Use the following information for the new virtual server, and then click Finished.

Form field Value
Name https_virtual
Destination Address/ Mask 10.1.10.20
Service Port 443
HTTP Profile http
Acceleration > HTTP Compression Profile httpcompression
Resources > Default Pool https_pool

5. Use a new tab to access https://10.1.10.20.

16

The page fails to load. At this point the BIG-IP system is simply forwarding SSL requests to the
downstream HTTPS web server without decrypting them first. This prevents the BIG-IP system from
performing any HTTP functions (such as HTTP compression) which is why the page fails to load.

6. In the Configuration Utility, on the Virtual Server List page click https_virtual, and then for SSL
Profile (Client) move clientssl to the Selected list.

7. For SSL Profile (Server) move serverssl-insecure-compatible to the Selected list, and then click
Update.

8. Reload the https://10.1.10.20 page.

The page displays as expected.

9. Identify the protocol used in the URL, and the port used on the downstream server (in the Pool
member address/port entry).

Although the BIG-IP system is now decrypting requests, it is re-encrypting before sending to the
HTTPS web servers, which means they must perform the CPU-intensive task of decrypting requests
and encrypting responses.

10. In the Configuration Utility, on the https_virtual page, for SSL Profile (Server) move serverssl-
insecure-compatible back to the Available list, and then click Update.

11. Open the Resources page.

12. From the Default Pool list select http_pool, and then click Update.

13. Reload the https://10.1.10.20 page.

14. Identify the protocol used in the URL, and the port used on the downstream server (in the Pool
member address/port entry).

The BIP-IP system is now performing SSL offload, sending all downstream requests using port 80.
This means that the web servers no longer need to perform the CPU-intensive task of decrypting
requests and encrypting responses.

15. Close the tab.

Task 2 – Configure BIG-IP Best Practices

1. Close the Configuration Utility, then open Internet Explorer and access https://10.1.10.240.

Currently the BIG-IP system can be accessed by the outside world using the external self IP address,
which is not recommended.

2. Log into the BIG-IP system, and then open the Network > Self IPs page and click 10.1.10.240.

3. From the Port Lockdown list select Allow None, and then click Update.

4. Return to the Self IPs page.

Why are you now unable to access the BIG-IP system?

5. Close Internet Explorer, then open Chrome and access https://10.1.1.245 and then log into the BIG-
IP system as admin / admin.

It is not recommended to use the default admin account.

17

6. Open the System > Users > Authentication page and click Change.

7. From the User Directory list select Remote – Active Directory.

8. Use the following information, and then click Finished.

Form field Value
Host 10.1.20.251
Remote Directory Tree DC=f5demo,DC=com
Bind DN CN=Service Account,OU=Corporate,DC=f5demo,DC=com
Bind Password password
Check Member Attribute Enabled (selected)
Role Guest

9. Open the Remote Role Groups page and click Create.

10. Use the following information, and then click Finished.

Form field Value
Group Name F5Admins
Line Order 10
Attribute String memberOf=CN=loraxadmins,CN=Users,DC=f5demo,DC=com
Assigned Role Administrator
Terminal Access tmsh

11. Create another role group using the following information, and then click Finished.

Form field Value
Group Name F5ResourceAdmins
Line Order 15
Attribute String memberOf=CN=resadmins,CN=Users,DC=f5demo,DC=com
Assigned Role Resource Administrator
Terminal Access Disabled

12. Create another role group using the following information, and then click Finished.

Form field Value
Group Name F5Operators
Line Order 20
Attribute String memberOf=CN=operators,CN=Users,DC=f5demo,DC=com
Assigned Role Operator
Terminal Access Disabled

13. Open the System > Users > User List page.

14. Select the admin account and change the password to admin-pass and then click Update.

15. Log in as bigip_operator / password.

18

16. Notice the user’s role at the top of the page.

17. Open the Virtual Server List page and examine the Create button.

This user can view all virtual servers and other BIG-IP system objects, but can’t create or update
objects.

18. Log out and then log back in as bigip_ra / password.

19. Notice the user’s role at the top of the page.

20. Open the Virtual Server List page.

This user and see and manage all virtual servers.

21. Open the System > Users > Authentication page and examine the Change button.

22. Log out and then log back in as bigip_admin / admin. (NOTE: You are intentionally logging in with
the wrong password.)

23. Log in as bigip_admin / password.

24. Open the System > Logs > Audit > List page, and then sort the list by the Time column in descending
order.

25. Examine the login and logout details for the three users.

You can see when each user logged in, logged out, and failed to login correctly.

Task 3 – Re-create the Application using iApp

1. Open the Virtual Server List page, then select the http_virtual and https_virtual checkboxes, and
then click Delete twice.

2. Open the Pool List page, then select the http_pool and https_pool checkboxes, and then click
Delete twice.

3. Open the Node List page, then select the node1, node2, and node3 checkboxes, and then click
Delete twice.

4. Open the iApps > Application Services > Applications page and click Create.

5. Create an application using the following information, and then click Finished.

19

Form field Value
User Name https_app
Template f5.http
Network > Do you want to use the latest TCP
profiles?

Yes

SSL Encryption > How should the BIG-IP sys-
tem handle SSL traffic?

Terminate SSL from clients, plaintext to servers

Virtual Server and Pools > What IP address do
you want to use

10.1.10.20

FQDN www.f5demo.com
Web servers 10.1.20.11: 80 (Click Add) 10.1.20.12: 80 (Click

Add) 10.1.20.13: 80
Application Health > What HTTP URI /index.php
Expected Response Welcome

6. Open the Virtual Server List page.

iApp created two virtual servers for the web application. The port 80 virtual server is used to redirect
requests to the port 443 virtual server.

7. Open the Pool List page.

iApp created a pool with three pool members and a monitor attached (which you can identify by it
being identified as available).

8. Open the Monitors page and click https_app_http_monitor.

iApp created the custom HTTP monitor for the web application.

9. Use a new tab to access http://10.1.10.20.

Notice that the request is redirected to https. The requests are sent to the web servers on port 80,
identifying that SSL offload is taking place.

10. Close the tab.

1.2.4 Lab 4: Configure High-Availability

In this lab you will set up a high availability pair using two BIG-IP systems. You’ll then test failover between
the two HA members.

Task 1 – Set up a Device Group

1. Open a new tab and click the BIGIP_B bookmark and then log into the BIG-IP system.

2. Note the status of both BIG-IP systems.

On bigipA.f5demo.com

1. Open the Device Management > Device Trust > Device Trust Members page and click Add.

2. In the Device IP Address field, type 10.1.1.246.

20

3. Enter admin for the Administrator Username and Administrator Password.

4. Click Retrieve Device Information.

5. Click Device Certificate Matches.

6. Verify that the Name value is bigipB.f5demo.com and click Add Device.

On bigipB.f5demo.com

1. Open the Device Management > Device Trust > Device Trust Members page.

This BIG-IP system sees bigipA.f5demo.com as a trusted peer.

2. Note the new status of both BIG-IP systems.

On bigipA.f5demo.com

1. Open the Device Management > Device Groups page and click Create. (ENSURE you are on
bigipA.f5demo.com.)

2. Create a device group using the following information, and then click Finished.

Form field Value
Name lorax_device_group
Group Type Sync-Failover
Members bigipA.f5demo.com bigipB.f5demo.com
Sync Type Manual with Incremental Sync

3. Note the new status of bigipA.f5demo.com.

4. Click Awaiting Initial Sync.

This directs you to the Device Management > Overview page.

5. In the Devices section, leave the bigipA.f5demo.com (Self) option selected.

6. For Sync Options leave Push the selected device configuration to the group selected and click
Sync.

7. Note the status of bigipA.f5demo.com.

Both BIG-IP systems are now in sync with each other.

On bigipB.f5demo.com

1. Attempt to log in as admin / admin.

Why do you think your login failed?

2. Log in as bigip_admin / password.

3. Examine the Virtual Server List and Pool List pages.

4. Open the iApps > Application Services > Applications page and click https_app.

5. Open the Reconfigure page.

6. Add a new pool member for 10.1.20.14:80, and then click Finished.

7. Note the updated status of bigipB.f5demo.com.

21

8. Click Changes Pending.

9. In the Devices section leave the default options selected and click Sync.

On bigipA.f5demo.com

1. Examine the Pool List page.

The https_app_pool now contains 4 members.

Task 2 – Test Failover

On bigipA.f5demo.com

1. Navigate to Local Traffic > Virtual Servers and right-click on Statistics and open the page in a new
tab.

2. In the statistics tab reset the statistics for all three virtual servers.

On bigipB.f5demo.com

1. Navigate to Local Traffic > Virtual Servers and right-click on Statistics and open the page in a new
tab.

2. Use a new tab to access http://10.1.10.25.

3. Use both statistics tabs (click Refresh) to identify which BIG-IP system processed the incoming re-
quest.

4. In the Configuration Utility tab for bigipB.f5demo.com, open the Device Management > Traffic
Groups page and click traffic-group-1.

For this traffic group the Current Device is bigipB.f5demo.com.

5. Click Force to Standby twice, and then view the value in the Active Device column.

6. In the Lorax Investments page, edit the URL to http://10.1.10.20, then use both statistics tabs to
identify which BIG-IP system processed the incoming request.

On bigipA.f5demo.com

1. In the Configuration Utility tab, open the Device Management > Devices page and click
bigipA.f5demo.com (Self).

2. Click Force Offline and then OK.

On bigipB.f5demo.com

1. Note the status of bigipB.f5demo.com.

On bigipA.f5demo.com

1. On the Devices page click Release Offline and then OK.

On bigipB.f5demo.com

1. Note the status of bigipB.f5demo.com.

When bigipA.f5demo.com comes back online it doesn’t become the active device.

Task 3 – Create an Active / Active Pair

On bigipA.f5demo.com

1. Open the Device Management > Traffic Groups page and click Create.

22

2. Create a traffic group using the following information, and then click Create Traffic Group.

Form field Value
Name traffic-group-2
Failover Method Preferred Device Order
Preferred Order bigipA.f5demo.com bigipB.f5demo.com

3. Open the Local Traffic > Virtual Servers > Virtual Address List page and click 10.1.10.25.

4. From the Traffic Group list select traffic-group-2 (floating), and then click Update.

5. Click Changes Pending.

6. Leave the default options selected and click Sync.

7. Note the status of both BIG-IP systems.

You now have an active / active pair.

8. Reset both statistics pages.

9. Access https ://10.1.10.20 and identify which BIG-IP processed the request.

10. Access http://10.1.10.25 and identify which BIG-IP is processed the request.

That concludes the hands-on exercises for the Introduction to ADC Deployments with LTM lab session.

23

24

2
Class 2: Building the F5 Fabric

Welcome to the Building the F5 Fabric lab session at F5 Agility 2018. These labs are intended to guide you
through creating basic Device Service Cluster (DSC) using the GUI, TMSH and in an automated fashion.

This guide is intended to complement lecture material provided during the Agility event as well as a refer-
ence guide that can be referred to after the class.

2.1 DSC Lab Network Setup

In the interest of focusing as much time as possible configuring your application delivery controller, we have
provided some resources and basic setup ahead of time. These are:

• Cloud-based lab environment complete with a Windows workstation, three virtual BIG-IPs (VE), and
a back-end banking application running on a Linux web server.

• The virtual BIG-IP has been pre-licensed

If you wish to replicate these labs in your office you will need to perform these steps accordingly.

To access the lab environment, you will require a web browser and Remote Desktop Protocol (RDP) client
software. The web browser will be used to access the lab training portal. The RDP client will be used to
connect to a Windows workstation, where you will be able to access the BIG-IPs (HTTPS, SSH).

You class instructor will provide additional lab access details.

2.1.1 Login info for lab jump box

Use RDP to connect to the DNS host provided to you in the Agility Portal. The user and password are:

Username: student
Password: agility

Bigip1: 10.128.1.245
Bigip2: 10.128.1.246
Bigip3: 10.128.1.247

25

BIG-IP Usernames BIG-IP Passwords
admin admin
root default

Timing for DSC Labs

The time it takes to perform each lab varies and is mostly dependent on accurately completing steps. This
can never be accurately predicted but we strived to derive an estimate among several people each having
a different level of experience. Below is an estimate of how long it will take for each lab:

LAB Name (Description) Time Allocated
Lab 1 – Active/Active ScaneN Clustering Exercise 55 minutes
Lab 2 – Sync-Only Groups Exercise 30 minutes
Lab 3 – Device Service Cluster Automation 60 minutes

2.2 Module 1: BIG-IP Device Service Cluster Configuration

In this module you will learn the basics of configuring BIG-IP DSC

2.2.1 Lab 1: Active/Active ScaleN Clustering Exercise

Configuration of active/active device cluster utilizing multiple traffic groups.

Objective:

• Create a two node cluster, with a traffic groups active on both BIG-IPs.

• Create two standard virtual servers. Both virtual servers must be active on a different BIG-IP in the
cluster.

Prerequisites and Notes:

To save some time, both VE images have been provided for you. They are licensed, and have basic network
connectivity established on the three VLANs listed below.

1.1 = External Network Interface (WAN Side)

1.2 = Internal network interface (LAN Side)

1.3 = High Availability Network Interface *not yet configured

The following is the IP addressing scheme for every student.

• External: 10.128.10.0/24

• Internal: 10.128.20.0/24

• HA: 192.168.1.0/24

Lab Requirements:

• Configure Floating Self-Ips

• Create HA VLAN

• Create additional Traffic Group

26

• Build a Device Service Cluster

• Create a pool of web servers

• Create three virtual servers

• Test failover

TASK 1 – Configure Floating Self IP’s

Create Floating Self IPs

1. Open Chrome on the Windows jump box. Connect to bigip1.

• https://10.128.1.245 (accept certificate error)

• Username: admin

• Password: admin

2. Go to Network -> Self Ips -> Create

3. Create a Floating Self IP for External VLAN using the following values

• Name/Address: 10.128.10.244

• Netmask: 255.255.255.0

• Port Lockdown: Allow None

• Traffic group: traffic-group-1 (floating)

27

4. Click Finished

5. Create a Floating Self IP for Internal VLAN using the following values

• Name/Address: 10.128.20.244

• Netmask: 255.255.255.0

• Port Lockdown: None

• Traffic Group: traffic-group-1 (floating)

6. Click Finished

Note: Although Self IP’s (non-floating) must be created on both F5’s in a cluster (which was already
completed for you), the creation of Floating Self IP’s only needs to occur on a single F5, as they will “float”
to the other F5 after HA has been successfully completed.

TASK 2 – Create HA VLAN

Create HA VLAN

1. Go to Network -> VLANs -> VLAN List -> Create

2. Create a VLAN using the following values:

• Name: ha

• Interface: 1.3 (untagged)

28

3. Click Finished

4. Repeat the above steps to create the ha vlan on bigip2

Create one Self IP on **bigip1* and one on bigip2 for HA VLAN*

On bigip1:

1. Go to Network -> Self IP’s -> Create

2. Create a Self IP using the following values:

• Name: 192.168.1.10

• IP Address: 192.168.1.10

• Netmask: 255.255.255.0

• VLAN: ha

• Port Lockdown: Allow Default

• Traffic Group: traffic-group-local-only (non-floating)

29

3. Click Finished

On bigip2:

1. Go to Network -> Self IP’s -> Create

2. Create a Self IP using the following values:

• Name: 192.168.1.11

• IP Address: 192.168.1.11

• Netmask: 255.255.255.0

• VLAN: ha

• Port Lockdown: Allow Default

• Traffic Group: traffic-group-local-only (non-floating)

Note: It is critical the Self IP on each big-ip be set to Allow Default for the ha VLAN. This is because failover
communication will be configured to use those IP’s in an upcoming task.

TASK 3 – Create Traffic Groups and Additional Floating Self IP’s

Create 2 new traffic groups on bigip1

1. Go to Device Management -> Traffic Groups -> Create

2. Create a new Traffic Group using the following values:

• Name: lab_traffic_group_01

• MAC Masquerade: 02:00:00:01:00:00

• Failover Method = Failover using Preferred Device Order and then Load Aware

3. Click Create Traffic Group

4. Go to Device Management -> Traffic Groups -> Create

30

5. Create a new Traffic Group using the following values:

• Name: lab_traffic_group_02

• MAC Masquerade: 02:00:00:02:00:00

• Failover Method = Failover using Preferred Device Order and then Load Aware

6. Click Create Traffic Group

Create additional Floating Self IP’s for the Internal VLAN for each traffic group

Create a Floating Self IP for Internal VLAN in Traffic Group 1

1. Go to Network -> Self IP’s -> Create

2. Create a Floating Self IP using the following values:

• Name: 10.128.20.243

• IP Address: 10.128.20.243

• Netmask: 255.255.255.0

• VLAN: internal

• Port Lockdown: Allow None

• Traffic Group: lab_traffic_group_01 (floating)

Create a Floating Self IP for Internal VLAN in Traffic Group 2

1. Go to Network -> Self IP’s -> Create

2. Create a Floating Self IP using the following values:

• Name: 10.128.20.242

• IP Address: 10.128.20.242

• Netmask: 255.255.255.0

• VLAN: internal

• Port Lockdown: Allow None

• Traffic Group: lab_traffic_group_02 (floating)

31

TASK 4 – Configure Device Connectivity for HA Communication

Configure Local HA Address

1. Go to Device Management -> Devices -> select your device (bigip1)

2. Choose ConfigSync tab

3. Under Local Address

4. Choose the HA address and click Update

Configure Network Failover

1. From the Failover Network tab, choose Add

2. Add both the Management address as well as the HA VLAN address

Important: Perform both of the above steps on bigip2 as well.

On bigip1, add bigip2 to Peer List

1. Go to Device Management -> Device Trust -> Device Trust Members

2. Click Add

3. Add the second F5’s Management Address

4. Click Retrieve Device Information

32

5. Click Device Certificate Matches

6. Click Add Device

7. Click on Device Management -> Devices. You will now see both F5’s.

Create Device Group

1. Go to Device Management -> Device Groups -> Create

2. Create a Device Group using the following values:

• Name: device_group_01

• Group Type: Sync-Failover

• Add both devices as Members

33

3. Click Finished

Perform the initial configuration sync

1. Click Awaiting Initial Sync in upper left corner of your screen

2. Select bigip1.lab (Self)

3. Choose Push the selected device configuration to the group

4. Click Sync. You will notice the change in the upper left status to “In Sync”

34

TASK 5 – Create Web Server Pool and Virtual Servers

Create a web server pool

1. Go to Local Traffic -> Pools -> Create

2. Create a Pool using the following values:

• Name: lamp_pool

• Health Monitor: http

• Add first Node: - Node Name: 10.128.20.11 - Address: 10.128.20.11 - Port: 80

• Add second Node: - Node Name: 10.128.20.12 - Address: 10.128.20.12 - Port 80

• Add third Node: - Node Name: 10.128.20.13 - Address: 10.128.20.13 - Port 80

3. Click Finished.

Create first Virtual Server

1. Go to Local Traffic -> Virtual Servers -> Create

2. Create a Virtual Server using the following values:

• Name: http_vs_01

• Destination (Host): 10.128.10.230

• Port 80

• Default Pool: lamp_pool

• Source Address Translation (SNAT): Auto Map

3. Click Finished

Create second Virtual Server

1. Go to Local Traffic -> Virtual Servers -> Create

2. Create a Virtual Server using the following values:

35

• Name: http_vs_02

• Destination (Host): 10.128.10.231

• Port 80

• Default Pool: lamp_pool

• Source Address Translation (SNAT): Auto Map

3. Click Finished

4. You should now have two virtual servers created

5. Sync your configuration.

TASK 6 – Configure Virtual Servers for Different Traffic Groups and Simulate Failover

Reconfigure the new Virtual Servers so that they reside in the 2 new traffic groups.

1. Go to Local Traffic -> Virtual Servers -> Virtual Address List

2. Click on 10.128.10.230

3. Change the Traffic Group to lab_traffic_group_01.

4. Click Update

5. Perform the same procedure for 10.128.10.231, but place in lab_traffic_group_02.

6. Sync Configuration

Check which objects are in each Traffic Group

1. Go to Device Management -> Traffic Groups

2. Select a group, and choose Failover Objects.

Simulate a failover within the Active/Active cluster

1. Go to Device Management -> Traffic Groups

36

2. Take note of which devices are currently servicing each Traffic Group. If 1 device is servicing a
particular traffic group, and the other device is servicing another traffic group, you will see that both
bigip1 and bigip2 list their status as ACTIVE in the GUI

3. From bigip1, choose any Traffic Group which is currently active on it.

4. Select Force to Standby to manually fail this traffic group over to bigip2

Note: This is failing over the traffic group only, not the device. When all traffic groups have been failed-over
to bigip2, bigip1 will be STANDBY, and bigip2 will be ACTIVE.

Why does bigip1 display as STANDBY when we never failed it over at the device level?

Are all VIP’s still accessible?

37

What are some practical, real-world examples for what we just configured?

2.2.2 Lab 2: Sync Only exercise

Objective: Add a sync only device group. You have already configured two VE’s in an Active/Active Con-
figuration with two traffic groups. Add a 3rd VE. Create new Sync-Only group, and new Partition that will
leverage new Sync-Only group. Create new SSL profile which will sync to all devices.

Prerequisites and Notes

Have at least 2 VE’s in an Active/Active Failover Configuration.

Note that for this exercise we will use three network interfaces (as in in the previous failover exercise)

1.1 = External Network Interface (Wan Side)

1.2 = Internal network interface (LAN Side)

1.3 = High Availability Network Interface

TASK 1 – Add HA Self IP to bigip3.lab

1. Go to Network -> Self Ips -> Create

• Name: 192.168.1.12

• IP Address: 192.168.1.12

• Netmask: 255.255.255.0

• VLAN: HA

• Port Lockdown: Allow Default

2. Click Finished

TASK 2 – Update Config-Sync Properties on bigip3.lab

1. Go to Device Management -> Devices

38

2. Click on then bigip3.lab (Self) link

3. Go to ConfigSync tab

4. Select 192.168.1.12 (HA) in Local Address dropdown

5. Click Update

TASK 3 – Add bigip3 to peer list on bigip1

1. Go to Device Management -> Device Trust -> Device Trust Members -> Add

2. Click on Retrieve Device Information

3. Click Device Certificate Matches

4. Click Add Device

39

5. Go to bigip3 and verify bigip1 and bigip2 are now in the peer list

TASK 4 – Create New Sync Only Group

On bigip1:

Create a sync only group

1. Go to Device Management -> Device Groups -> Create

• Name = device_group_02_so

• Group Type = Sync-Only

• Members = All 3 bigip’s

40

2. Click Finished

Perform initial sync

1. Click Awaiting Initial Sync in the upper-left of the GUI

2. Choose device_group_02_so, then choose bigip1.

3. Select Push the selected device configuration to the group and then click Sync

41

TASK 5 – Create New Partition and SSL Profile, Configure for Sync-Only

On bigip1:

Create new Partition

1. Go to System -> Users -> Partition List -> Create

• Partition Name = partition_02_so

• Device Group = (uncheck “Inherit device group from root folder” box), device_group_02_so

• Traffic Group = None

2. Click Finished

Create new Client SSL Profile

1. Go to Local Traffic -> Profiles -> SSL -> Client

2. Change Partition to partition_02_so in the upper-right of the GUI

42

3. Click Create

• Name = clientssl_02_lab

• Accept all defaults

4. Click Finished

Sync Changes

1. On bigip2 and bigip3, confirm this Sync-Only clientssl profile has synced

2. Go to Local Traffic -> Profiles -> SSL –> Client

3. Choose partition_02_so

4. Is clientssl_02_lab there?

What are some practical uses for Sync-Only device groups?

2.2.3 Lab 3: Device Service Cluster Automation

We’ll be using POSTMAN and it is built upon Chrome libraries, therefore, you must use Chrome to visit
every BIG-IP login page (i.e. http://10.128.1.245/) and bypass the security warning - otherwise the REST
calls will fail. If you fail to bypass these security warnings because of the untrusted SSL certificate on the
BIG-IP management interface you will receive an error when attempting to send REST calls.

Pre-lab work

To start this lab, we’ll want to start with a blank state again - erasing all that hard work you’ve done. In
order to do so, go to “SYSTEM -> Archives” and then click on the UCS archive shown. Once it is up, click
to restore and start the process on both BIG-IP’s in order to go back to the default Lab configuration.

Objective: At a high level, we’ll be building a simple active/standby device service cluster (DSC). With
some new DevOps oriented packages created by F5, the heavy lifting will be taken away, and we have
some simple REST API calls to make to accomplish the DSC creation. The high levelsteps to do this are
as follows:

1. Authenticate. We’ll show basic and token based authentication - but we’ll then use token authentica-
tion throughout the rest of the exercises.

2. Installation of the DevOps packages. We’ll SCP the packages to the BIG-IP’s, then via API, install
them and verify they are installed.

43

http://10.128.1.245/

3. Execute the device settings package in order to set the hostname, device name, NTP server and NTP
timezone.

4. Execute the DSC configuration package in order to create an active/standby DSC.

Hint: Note that when working with API’s, generally once you create an object it is done via a POST. If you
try to modify an object by using the POST method again, you will create another instance of what you’ve
done, or receive an error citing an object with that name already exists. The “Blocks” that you submit via
POST will be duplicated if you use the POST method as they will each receive a unique ID upon creation.

Modification is done via the PATCH HTTP method calling out the same name/ID. There are a few “Optional”
tasks created within POSTMAN which you can experiment Unbinding and deleting application blocks.

TASK 1 – Authentication

One of the many basic concepts related to interaction with REST API’s is how a particular consumer is
authenticated to the system. BIG-IP and iWorkflow support two types of authentication: HTTP BASIC and
Token based. It’s important to understand both of these authentication mechanisms, as consumers of the
API will often make use of both types depending on the use case. This lab will demonstrate how to interact
with both types of authentication.

1. Open Postman from the Desktop and make sure the Environment is set to
Lab3_DevOps_Automation

TASK 2 – HTTP BASIC Authentication

In this task we will use the Postman tool to send API requests using HTTP BASIC authentication.
As its name implies this method of authentication encodes the user credentials via the existing BA-
SIC authentication method provided by the HTTP protocol. The mechanism this method uses is to
insert an HTTP header named Authorization with a value that is built by Base 64 encoding the
string <username>:<password>. The resulting header takes this form:

Authorization: Basic YWRtaW46YWRtaW4=

It should be noted that cracking the method of authentication is TRIVIAL; as a result API calls should always
be performed using HTTPS (F5 default) rather than HTTP.

Perform the following steps to complete this task:

1. Open the Postman application from the link on the Desktop. Click the ‘Collections’ tab on the left
side of the screen, expand the Lab3_DevOps_Automation collection on the left side of the screen,
expand the Lab 3 Task 2/3 - API Authentication & ‘example’ folder:

44

2. Click the Step 1: HTTP BASIC Authentication item. Click the ‘Authorization’ tab and select
Basic Auth as the Type. Fill in the username and password (admin/admin) and click the ‘Update
Request’ button. Notice that the number of Headers in the Headers tab changed from 1 to 2. This
is because Postman automatically created the HTTP header and updated your request to include it.
Click the ‘Headers’ tab and examine the HTTP header:

3. Click the ‘Send’ button to send the request. If the request succeeds you should be presented with a
listing of the /mgmt/tm/ltm Organizing Collection.

4. Update the credentials and specify an INCORRECT password. Send the request again and examine
the response:

45

TASK 3 – Token Based Authentication

One of the disadvantages of BASIC Authentication is that credentials are sent with each and every request.
This can result in a much greater attack surface being exposed unnecessarily. As a result Token Based
Authentication (TBA) is preferred in many cases. This method only sends the credentials once, on the
first request. The system then responds with a unique token for that session and the consumer then uses
that token for all subsequent requests. Both BIG-IP and iWorkflow support token-based authentication
that drops down to the underlying authentication subsystems available in TMOS. As a result the system
can be configured to support external authentication providers (RADIUS, TACACS, AD, etc) and those
authentication methods can flow through to the REST API. In this task we will demonstrate TBA using the
local authentication database, however, authentication to external providers is fully supported.

Hint: For more information about external authentication providers see the section titled About ex-
ternal authentication providers with iControl REST in the iControl REST API User Guide available
at https://devcentral.f5.com

Perform the following steps to complete this task:

1. Click the ‘Step 2: Get Authentication Token’ item in the Lab 3.1 Postman Collection

2. Notice that we send a POST request to the /mgmt/shared/auth/login endpoint.

3. Click the ‘Body’ tab and examine the JSON that we will send to BIG-IP to provide credentials and the
authentication provider:

46

https://devcentral.f5.com/

4. Modify the JSON body and add the required credentials (admin/admin). Then click the ‘Send’ button.

5. Examine the response status code. If authentication succeeded and a token was generated the
response will have a 200 OK status code. If the status code is 401 then check your credentials:

Successful:

Unsuccessful:

6. Once you receive a 200 OK status code examine the response body. The various attributes show the
parameters assigned to the particular token. Find the ‘token’ attribute and copy it into your clipboard
(Ctrl+c) for use in the next step:

47

7. Click the ‘Step 3: Verify Authentication Works’ item in the Lab 3.1 Postman collection. Click the
‘Headers’ tab and paste the token value copied above as the VALUE for the X-F5-Auth-Token
header. This header is required to be sent on all requests when using token based authentication.

8. Click the ‘Send’ button. If your request is successful you should see a ‘200 OK’ status and a listing of
the ltmOrganizing Collection.

9. We will now update your Postman environment to use this auth token for the remainder of the lab.
Click the Environment menu in the top right of the Postman window and click ‘Manage Environments’:

48

10. Click the Lab3_DevOps_Automation item

11. Update the value for bigip_a_auth_token by Pasting (Ctrl-v) in your auth token:

12. Click the ‘Update’ button and then close the ‘Manage Environments’ window. You’re subsequent
requests will now automatically include the token.

13. Click the ‘Step 4: Set Authentication Token Timeout’ item in the Lab 3.1 Postman collection. This
request will PATCH your token Resource (check the URI) and update the timeout attribute so we can
complete the lab easily. Examine the request type and JSON Body and then click the ‘Send’ button.
Verify that the timeout has been changed to 36000 in the response:

49

14. Repeat the same steps for setting the authentication token for BIG-IP 2 into the environment variable
bigip_b_auth_token, ensuring the set the timeout as well.

TASK 4 – Install iApp RPM Packages

In this Task you’ll be installing two DevOps packages developed by F5 built for the express purpose of
quickly and easily taking a new set of BIG-IP’s and bringing them online programmatically. You will install
the packages on the two BIG-IP’s using SCP, and then interact with the BIG-IP API.

1. Use WinSCP to SCP from ~\Documents\LabFiles*.rpm to /var/config/rest/downloads
on BIG-IP 1 and BIG-IP 2.

The user is root and the password is default. WinSCP has been preconfigured for both BIG-IP’s.
You can exclude the DSC RPM on BIG-IP 2 if you desire, as we won’t install it there.

2. Expand the Lab 3 Task 4 ‘Install RPM Packages’ collection in Postman and click Step 2: “Install device
settings RPM package on BIGIP1”.

Click the Body tab and note the command.

Click Send

You should receive a 200 OK response

3. Expand the Lab 3 Task 4 ‘Install RPM Packages’ collection in Postman and click Step 3: “Install DSC
RPM package on BIGIP1.”

Click the Body tab and note the command.

Click Send

You should receive a 202 Accepted response

4. Expand the Lab 3 Task 4 ‘Install RPM Packages’ collection in Postman and click Step 4: “Install device
settings RPM package on BIGIP 2”.

Click the Body tab and note the command.

Click Send

You should receive a 202 Accepted response

5. Run Step 5 “Get Block Template IDs on BIG-IP 1.” The output of this command will return two
JSON templates, one for each package that was installed. At the top of the JSON payload is

50

the field id. Capture the unique ID for the id key and put it into the Environment Variables
bigip_a_settings_id and bigip_a_dsc_id. Ensure that these ID’s are mapped from the cor-
rect template to the correct environment variable or later calls will fail. If you get zero, or just one
TEMPLATE result back, there are “OPTIONAL” calls as part of Task 4.

6. Run Step 6 “Get Block Template IDs on BIG-IP 2.” Just like the previous step, take the “id” output
for the device-settings TEMPLATE and put it into the environment variable bigip_b_settings_id.
The DSC package was not installed on BIG-IP 2 so you will only see one block template.

Error: Running the “OPTIONAL” REST calls if you ran into trouble. There are three calls,
one for each of the packages that get installed in the event you need to delete a “block”. In order
to run them, we require the task ID from the installation REST Call. The graphic below shows that
ID. Take that ID and then move to the requisite task and put the ID at the end of the URI replacing
{guid} and run the call. The resulting output will tell you what has happened. Most likely, the
package isn’t in the right directory and cannot be installed. If that’s the case, move the file in place
and run the install REST call again.

The response contains the updated status of the package management task. The JSON in the re-
sponse contains the status property. When the value of status updates to “FINISHED”, the pack-
age installation is complete. You can then find the added package at /var/config/rest/iapps/
f5-rest-bigip-settings on the command line.

TASK 5 – Configure Device Settings

This taks modifies base device settings. The DSC package requires NTP, DNS, and hostname to be set
before it will work, so that is what this exercise is doing. This package can also license/re-license a device,
or default the configuration in one REST call. Because of the lab setup, we will not be doing the licensing
portion in the lab.

Expand the Lab 3 Task 5 ‘Device Settings – NTP/DNS/License’ collection.

51

1. This step lists the specific “block” identified by {{bigip_a_settings_id}}, meaning the
installed iApp packages and their associated properties. If you were to remove the /
{{bigip_a_settings_id}} from the URI, you could see all configured blocks, Those with
TEMPLATE as the status, as well as any in BINDING, BOUND or ERROR state.

To formulate your own call, you’d take the output of the TEMPLATE block and create your own “block”
in order to change settings. We’ve already done that in Step 2, and the environment variables are
being used to identify the parent TEMPLATE/package.

2. We’ve formulated a valid call to BIG-IP 1 here, and we’ve modified settings like hostname, timezone,
NTP and DNS (server) and search domain. Feel free to change some of these settings if you’d like,
but make the changes simple as syntax is vitally important to the success of the call. We’re using
IP addresses that will have no meaning in a real configuration (IP address of 127.27.1.1), but are
required to be set for the DSC RPM.

One item to note is the selfLink variable at the bottom of the call body. The correct ID needs to be
identified and we do that by utilizing the {{bigip_a_settings_id}}. property.

The response for this call will give you a ID as the top line of the response. Capture that ID and move
to Step 3.

3. In step 3 you will need to paste the ID captured in step 2 in place of the {guid} at the end of the URI.

We are interested to see the state “BOUND” which is found near the end of the response. If the state
still shows “BINDING,” continue to re-run this call until you see BOUND or an error. The errors should
be self explanatory, but if you have trouble, see one of the proctors.

52

Steps 4,5,6 - Repeat steps 1, 2, and 3 for bigip2, but use the POSTMAN steps 4, 5, and 6 that have been
pre-set for BIG-IP 2.

Close all open tabs (Don’t Save if prompted) at the top of POSTMAN to avoid unexpected crashes.

TASK 6 – Create the Device Service Cluster

Hint: The rest of the queries will be run against BIG-IP 1.

In this portion of the lab we’ll be creating the DSC.

Expand the Lab 3.4 ‘Device Service Cluster’ collection.

1. This step adds a device group called lab3_4_group. Run this step and ensure you get a 200 OK
response code.

In Steps 2 and 3 we’ll add both BIG-IP’s to this group. Run these steps and ensure you get a 200 OK
response code.

2. Run Step 2 REST call

3. Run Step 3 REST call

4. In Step 4 we’ll query this device-group we just created and we’ll verify that it was created with both
devices in the group and we’ll also need to grab the machineId values from the output and copy them
into the BODY of the call in Step 6.

53

5. This step is a formality as we’ve already created a call for you, but this is how you’d gain the body of
a call you formulated yourself. We’ve done that in Step 6, so go ahead and move to the next step.

6. In this step, we’ll be creating the sync-failover group Lab_3.4_failover-cluster, adding a
HA_VLAN on interface 1.3 and creating Self-IP’s for those VLANS on both BIG-IP’s.

You’ll need to capture the machineId from step 4 for both BIG-IP’s and paste it into the
deviceReference under the section for each BIG-IP. The item to replace will be labeled as
{machineId_BIGIP_X} where X is 1 or 2.

54

Once you have these two properties updated, then please run the REST call. Take the ID from the
top line of the response as we’ll use that to verify that the status is BOUND in the following step.

7. Take the ID saved from the response from Step 6 and pasted it at the end of the URI, replacing
{guid} as you’ve done before. Run this step until you see the state show as BOUND. If it shows
as BINDING, then you can continue to run this command until you see BOUND or ERROR. The error
should be self explanatory, but if you have trouble, please see a proctor.

Note: At this point, you should have a valid DSC in active/standby state. Verify that you have a new VLAN
(HA_VLAN) and SelfIP for that VLAN and the cluster should be “In-Sync.”

2.2.4 Final Notes

Here are a few helpful Solution Articles which helped us create this lab:

SOL 13250 - Overview of Port Lockdown Behavior

• TMOS v10.x - v11.x: https://support.f5.com/csp/article/K13250

• TMOS v12.x - v13.x: https://support.f5.com/csp/article/K17333

Even if you specify Port Lockdown as None this Solution states the following: ICMP traffic is always
allowed, and if the BIG-IP systems are configured in a redundant pair, ports that are listed as exceptions
are always allowed from the peer system.

SOL 13946 - Troubleshooting ConfigSync and device service clustering issues (11.X)

55

https://support.f5.com/csp/article/K13250
https://support.f5.com/csp/article/K17333

https://support.f5.com/csp/article/K13946

Ever see “Awaiting Initial Sync,” “Sync Failure,” or “Changes Pending” and don’t know how to go about
resolving the issue? This is a guide to keep handy if you’re running in HA mode with 11.X and above. It will
give you simple tests do diagnose the issues you will face and how to resolve them.

Version 13.0 Relase Notes

https://support.f5.com/kb/en-us/products/big-ip_ltm/releasenotes/product/relnote-ltm-13-0-0.html

New Built-in TCP Profiles, auto Nagle, auto Buffer tuning

Default TCP profiles are becoming read only for “troubleshooting purposes.”

If you are using the default TCP profile, it is not optimal and can be less productive for your applications.
Please see: https://devcentral.f5.com/articles/stop-using-the-base-tcp-profile

“When the latency penalty in using Nagle’s algorithm is small, the feature assembles data into full-size
packets; when it is high, it stops doing that.”

Instead of analyzing traffic captures and setting send buffer/receive buffer sizes manually, customers can
now select the auto option for send/receive buffer sizes and high/low watermarks for the TCP Proxy buffers

The content contained here leverages a full DevOps CI/CD pipeline and is sourced from the GitHub repos-
itory at https://github.com/f5devcentral/f5-agility-labs-adc. Bugs and Requests for enhancements can be
made by opening an Issue within the repository.

56

https://support.f5.com/csp/article/K13946
https://support.f5.com/kb/en-us/products/big-ip_ltm/releasenotes/product/relnote-ltm-13-0-0.html
https://devcentral.f5.com/articles/stop-using-the-base-tcp-profile
https://github.com/f5devcentral/f5-agility-labs-adc

3
Class 3: BIG-IP® Local Traffic Manager (LTM) - v13.1 Lab Guide

This lab guide is designed for you to get an understanding of the BIG-IP Local Traffic Manager (LTM)
product.

3.1 Lab Overview

• F5 BIG-IP LTM VE, licensed using F5-BIG-VE-LAB-LIC

• Your BIG-IP is as close to factory default as possible. Only the following changes have been made:

• The management IP has already been configured

• The initial setup has been completed. (Licensing and Platform information)

• The Idle Timeout was modified from 1200 seconds to 7200 seconds

• The Welcome messages for the GUI and SSH were changed.

• An archive file base-setup-and-licensing.ucs was created allowing you to revert to the base settings
above.

Note: Various directory and application services are available within the lab environment.

Warning: DO NOT COPY INFORMATION FROM THE SCREENSHOTS. THEY ARE FOR REFER-
ENCE ONLY.

3.2 Scenario

Your customer has the following environment. The servers sit on the customers internal VLANs, the virtual
servers will exist in another VLAN in the DMZ. The customer does not want to rework their networking and
does not wish to use the LTM as the default gateway. Our solution will be to use SNATs to force traffic to
pass through the BIG-IP to return through the LTM.

57

3.2.1 Lab 1: Access the Lab Environment

You will now gain access to your lab environment and your BIG-IP. The first agenda item is to log in to the
training portal. After this, you will create a remote desktop session to the training environment and access
your BIG-IP.

Access the Lab Environment

1. Using Firefox or Chrome open a connection to the training portal supplied by the instructor

58

(a) Using the IP address supplied by the instructor log on to the training portal

i. http://<ip_address_supplied_by_instructor/

ii. User: ltm101studentX (where X is your student number)

iii. Password: PieINtheSKYltm101

(b) Open the blueprint or the view link.

(c) Find the Xunbutu jumpbox in the list of applications and select console to access the jumpbox
via the browser. Alternately you can use the IP address associated with the jumpbox to access
it via RDP.

(d) Access the xbun-jumpbox using the Console (watch for pop-up blockers)

i. User: f5student

59

http:/

ii. Password: f5DEMOs4u

2. To access the BIG-IP open a new browser window and

(a) Click the bookmark bigip01

i. User: admin

ii. Nomenclature for GUI navigation begins on the side-bar and then goes to the pop-up or
top-bar.

iii. For example: Go to Local Traffic >> Virtual Servers >> Virtual List

3.2.2 Lab 2: The Basics (Networking, Pools and Virtual Servers)

In this lab we will access the Management GUI. We will then create the VLANs and assign self IP addresses
to our VLAN. As mentioned during our lecture portion, BIG-IPs may be put in-line or one-armed depending
on your customer’s requirements and topology.

Creating VLANs

You will need create two untagged VLANs, one client-side VLAN (client_vlan and one server-side VLAN
(server_vlan) for the devices in your network.

1. From the sidebar select Network >> VLANs then select Create

60

(a) Under General Properties:

i. Name: client_vlan

(b) The name is for management purposes only, you could name them after your children or pets

i. Tag: <leave blank>

A. Entering a tag is only required for “Tagged” (802.1q interfaces. “Untagged” interfaces
will automatically get a tag which is used for internal L2 segmentation of traffic.

(c) Under Resources in the Interfaces section:

i. Interface: 1.1

ii. Tagging: Untagged

iii. Select the Add button. Leave all other items at the default setting.

61

When you have completed your VLAN configuration, hit the Finished button

Create another untagged VLAN named server_vlan on interface 1.2.

Assigning a Self IP addresses to your VLANs

Go to Network >> Self IPs, select Create.

1. Create a new self IP, for the server_vlan and client_vlan VLANs.

(a) In Network >> Self IPs >> New Self IP, under Configuration enter:

Server-Side Client-side

Name: server_ip client_ip

IP Address: 10.1.20.245 10.1.10.245

Netmask: 255.255.255.0 255.255.255.0

VLAN: server_vlan client_vlan

Port **Lockdown**: Allow None Allow None

62

The default “Allow None” means the Self IP would respond only to ICMP.

(b) The “Allow Defaults” selection opens the following on the self IP of the VLAN

i. TCP: ssh, domain, snmp, https

ii. TCP: 4353, 6699 (for F5 protocols, such as HA and iQuery)

iii. UDP: 520, cap, domain, f5-iquery, snmp

iv. PROTOCOL: ospf

Note: Even with “Allow None” chosen, traffic destined for a virtual server or object on the F5 (e.g.
NAT) are able to pass through without issue as any object created on the F5 is by default allowed to
pass through.

When you have completed your self-IP configuration, hit the button. You should have something
similar to the following

Assigning the Default Gateway

1. Go to Network > Routes and then Add.

(a) Here is where we assign our default gateway (and other static routes as desired)

(b) Under Properties

63

i. Name: default_gateway

ii. Destination: 0.0.0.0

iii. Netmask: 0.0.0.0

iv. Resource: Use Gateway. . .

v. Gateway Address: 10.1.10.1

vi. When you have completed defining your default gateway, hit the button

2. Verify your network configuration

(a) Ping your client-side self IP (10.1.10.245) to verify connectivity

(b) Use an SSH utility, such as puTTY, to access your BIG-IP management port at 10.1.1.245.

i. User: root Password: default

ii. Ping your default gateway, 10.1.10.1

iii. Ping a web server at 10.1.20.11.

Creating Pools

In this lab we will build a pool and virtual server to support our web site and verify our configurations by
accessing our web servers through the BIG-IP. Verification will be performed visually and through various
statistical interfaces.

1. From the sidebar, select Local Traffic >> Pools then select Create. Here we will create our new pool

(a) Under Configuration:

i. Name: www_pool

A. The name is for management purposes only, no spaces can be used

ii. Description: <optional>

iii. Health Monitor: http

64

(b) Under Members:

i. Load Balancing Method: <leave at the default Round Robin>

ii. Priority Group Activation: <leave at default>

iii. New Members:

Address Service Port
10.1.20.11 80
10.1.20.12 80
10.1.20.13 80

iv. As you enter each IP address and port combination, hit the Add button

When you have completed your pool configuration, hit the Finished button

Creating Virtual Servers

Now let’s build our virtual server

1. Under Local Traffic >> Virtual Servers, click the “+” icon

(a) Under General Properties

i. Name: www_vs

ii. Description: <optional>

65

iii. Type: Standard

iv. Source/Address: <leave blank>

Note: The default is 0.0.0.0/0, all source IP address are allowed

v. Destination Address/Mask: 10.1.10.100

Note: The default mask is /32

vi. Service Port: 80 or HTTP

(b) Under Configurations

i. The web servers do not use the BIG-IP LTM as the default gateway. This means return traffic
will route around the BIG-IP LTM and the TCP handshake will fail. To prevent this we can
configure SNAT Automap on the Virtual Server. This will translate the client IP to the self IP
of the egress VLAN and ensure the response returns to the BIG-IP.

ii. Source Address Translation: Auto Map

(c) Under Resources

i. iRules: none

ii. Default Pool: From the drop down menu, select the pool (www_pool) which you created
earlier

iii. Default Persistence Profile: None

iv. Fallback Persistence Profile: None

When you have completed your virtual server configuration, hit the Finished button

You have now created a Virtual Server (Note: Items in blue are links)

1. Now let’s see if our virtual server works!

(a) Open the browser to the Virtual Server you just created

66

(b) Refresh the browser screen several times (use “<ctrl>” F5)

• Go to your BIG-IP and view the statistics for the www_vs virtual server and the www_pool pool
and its associated members

• Go to Statistics > Module Statistics > Local Traffic

– Choose Virtual Servers from drop down

• Go to Local Traffic >> Virtual Servers >> Statistics

• Go to Local Traffic >> Pools >> Statistics

– Did each pool member receive the same number of connections?

– Did each pool member receive approximately the same number of bytes?

– Note the Source and Destination address when you go to directly and through the virtual
server

67

• Let’s archive our configuration in case we have to fall back later.

– Go to System >> Archives and select Create.

* Name your archive lab2_the_basics_net_pool_vs

3.2.3 Lab 3: Load Balancing, Monitoring and Persistence

Objectives:

• Configure and review Ratio load balancing

• Build and test priority groups

• Build a content monitor that looks for a receive string and requires authentication

• Build and review simple (source IP) persistence and cookie persistence.

Ratio Load Balancing

1. Go to Local Traffic >> Pools and select www_pool and then Members from the top bar or you could
click on the Members link in the Pool List screen.

Note: When we created the pool, we performed all of our configurations on one page, but when we
modify a pool the Resource information is under the Members tab

2. Under Load Balancing section

(a) Change the Load Balancing Method to Ratio (Member)

(b) As you look at the drop-down menu, notice most load balancing methods have two options:
(Node) or (Member). Remember the difference?

68

(c) Don’t forget the Update button

(d) Then under Current Members

i. Select the first member in the pool 10.1.20.11:80.

ii. Under the Configuration section

A. Change the Ratio of the member to 3

(e) Select the Update button

69

3. Verification

(a) Check the pool statistics by selecting Statistics on the top bar, if you are still in Local Traffic >>
Pools, or by going to Statistics >> Module Statistics >> Local Traffic and selecting Pool from
Statistics Type.

(b) Reset the statistics for your www_pool pool by checking the boxes next to the pool members
and hitting the Reset button

i. Browse to your www_vs (10.1.10.100) virtual server

ii. Refresh the browser screen several times (use “<ctrl>” F5)

iii. Select the Refresh button on the Statistics screen

iv. How many total connections has each member taken?

v. Is the ratio of connections correct between the members?

(c) Now go back and put the pool load balancing method back to Round Robin

i. Reset the statistics

ii. Refresh the virtual server page several times

iii. Refresh the statistics

iv. Does the ratio setting have any impact now?

Priority Groups Lab

Let’s look at priority groups. In this scenario we will treat the .13 server as if it were in a disaster recovery
site that can be reached over a backhaul. The customer would like to maintain at least two members in
the pool for redundancy and load. They would find this beneficial to allow connections to proceed during a
maintenance window or during an outage.

1. Go to Local Traffic >> Pools >> www_pool

(a) Select the Members tab.

i. Set the Load Balancing Method back to Round Robin

ii. Set the Priority Group Activation to Less than . . . 2 Available Members.

70

(b) Don’t forget to hit the Update button

(c) Select the pool members 10.128.20.11 and 10.128.20.12 and set their Priority Group to 2.

i. This will allow you to change the priority on that particular member.

2. Review your settings and let’s see how load balancing reacts now

(a) Select the Statistics tab.

(b) Reset the pool statistics.

(c) Browse to your virtual server and refresh several times.

(d) Refresh your statistics.

(e) Are all members taking connections?

(f) Which member isn’t taking connections?

3. Let’s simulate a maintenance window or an outage by disabling a pool member in the highest priority
group (2).

Note: F5 ranks priority from low number to high number. This means, a priority of 1 has a lower
priority than 2, and onwards.

This should cause priority group activation to kick in, since the number of active members in our high
priority group has dropped below one.

4. Select the member in the Priority Group 2 and Disable that pool member.

(a) Select the Disable button

71

(b) The status indicator now goes to black, indicating the member has been disabled

5. Once again, select Statistics, reset the pool statistics, browse to the virtual server and see which
pool members are taking hits now.

Once you are done testing re-enable your disabled pool member.

Monitor Labs

Objective:

• Build a default monitor for nodes

• Build a content monitor for your pool

Default Monitors

1. Go to Local Traffic >> Nodes, note the status of the nodes.

(a) Note that the nodes exist in this table, even though they were never specifically configured in
the Node section of the GUI. Each time a unique IP address is placed in a pool a corresponding
node entry is added and assigned the default monitor (if any).

(b) Select the Default Monitors tab.

(c) Notice we have several options. For nodes you will want a generic monitor, so we will choose
icmp.

72

(d) Select icmp from the Available box and hit to place it in the Active box.

(e) Click on the Update button to finalize your changes.

2. Select Node List or Statistics from the top tab.

(a) What are your node statuses?

3. Select Statistics >> Module Statistics >> Local Traffic

(a) What are the statuses of your nodes, pool and virtual server?

For those of you who did the FQDN Pool extra credit lab, you will notice your FQDN in the node list. The
status should be Available (Green) even though there wasn’t a monitor. This is because a good status
indicates the BIG-IP successfully queried the DNS server for the name. Click on the FQDN node to see
additional options, such as query interval.

Content Monitors

The default monitor simply tells us the IP address is accessible, but we really don’t know the status of
the particular application the node supports. We are now going to create a monitor to specifically test the
application we are interested in. We are going to check our web site and its basic authentication capabilities.

1. Browse to http://10.1.10.100 and on the web page select the Basic Authentication link under Au-
thentication Examples.

(a) User: user.1

(b) Password: password

(c) You could use text from this page or text within the source code to test for availability. You could
also use HTTP statuses or header information. You will be looking for the HTTP status “200 OK”
as your receive string to determine availability.

(d) Note the URI is /basic. You will need this for your monitor.

2. Select Local Traffic >> Monitor on the side-bar and select the plus (+) sign or Create

73

(a) Now we can create a monitor to check the content of our web page to ensure things are running
properly.

i. Name: www_test

ii. Type: HTTP

74

(b) Once you have selected you parent (Type) monitor, you can access the Configuration section

i. Send String: Enter the command to retrieve the page you want “GET /basic/r\n” (no
quotes)

ii. In the Receive String box put “200 OK” (no quotes)

Note: The receive string is not case sensitive.

iii. Enter user.1/password for the Username and Password

75

(c) Click Finish and you will be taken back to Local Traffic >> Monitors

3. Where is your new Monitor?

(a) Hint: Check the lower right hand corner of the Monitors list. Here you can go
to the next page or view all Monitors

(b) You can change the number of records displayed per page in System >> Preferences

4. Go to Local Traffic >> Pools >> www_pool and choose Properties from the top bar

(a) Remove the http monitor from the Active box.

(b) Select the www_test monitor from the Available monitor’s window in the Configuration section
and move it to the Active window.

76

5. Once you have selected your parent (Type) monitor, you can access the Configuration section

(a) Select Statistics from the tabs.

(b) What is the status of the pool and its members?

6. Go to Local Traffic >> Virtual Servers. What is the status of your virtual server?

(a) Browse to your www_vs virtual server. Which members are taking traffic?

(b) Just for fun reverse the monitor. Now when 200 OK is returned it indicates the server is not
responding successfully. You can see where this would be useful if you were looking for a 404
(bad page) response.

Monitor Testing

There is now the ability to test monitors. This is tremendously helpful as you no longer need to create
monitors and add them to false objects on the BIG-IP. The functionality is now built in to the monitor itself to
be less invasive on your infrastructure, and less time consuming all together.

1. Go to Local Traffic >> Pools >> www_pool

(a) Under Configuration, move the active monitor to Available

2. Go to Monitors and click on http

(a) Click the Test tab

(b) Under Address plug in 10.1.20.11 and in the port field plug in 80

(c) Click Test

77

(d) Go back to Local Traffic >> Pools >> www_pool

i. Once here, move http back to Active

Persistence Labs

In this lab we will configure a couple types of persistence and view their behavior. For persistence, profiles
will have to be created and attached to our virtual server.

Lab Requirements:

• Prior to beginning the lab verify your www_pool has been set to the following parameters:

– Load Balancing Method: Round Robin

– Priority Group Activation: Disable

* The members Ratio and Priority Group mean nothing since we aren’t using Ratio load
balancing and Priority Groups are disabled.

– Hit Update

– Hit your virtual server several times, you should see all 3 servers respond.

Simple (Source Address) Persistence

1. Go to Local Traffic >> Profiles and select the Persistence tab.

(a) From the Persistence Profiles screen select the Create button.

78

(b) At the New Persistence Profile screen enter:

i. Name: my-src-persist

ii. Persistence Type: Source Address Affinity

(c) This will add the Configuration section to the General Properties section.

i. Note the parent profile.

(d) In the Configuration section, set the

79

i. Timeout: 60 seconds

ii. Prefix Length: None

A. This is the default and is a /32 prefix (255.255.255.255 mask).

B. Each new IP address will create a new persistence record.

iii. Hint: You can’t change these settings until you have checked the Custom box. This prevents
unwanted or unauthorized changes from within the GUI, without explicitly allowing it. Also, it
allows you to know what has changed from the default settings.

(e) You have just created your first custom Profile.

i. Note the check box for your new custom profile isn’t grayed out and can be selected to allow
you to delete the profile if desired.

2. Now let’s attach our new profile to the virtual server.

(a) Go to Local Traffic >> Virtual Server and

i. Select www_vs and the Resources tab or

ii. Take the shortcut directly to the Resources of the virtual server. (Can you find it?)

(b) Set the Default Persistence Profile to my-src-persist.

(c) Don’t forget to Update before leaving the page. (Be careful, the reminders will stop!)

(d) Testing Source Address Affinity

i. At this point you may want to open a second browser window to the management GUI.

ii. From one management window go to Statistics >> Module Statistic >> Local Traffic

iii. Select Persistence Records for the Statistics Type menu

80

3. At this point you will see that the Persistence Records statistics display has been disabled (way back
in v12.1). A TMSH database command is required to activate it.

(a) SSH to you BIG-IP at 10.1.1.245. Username: root Password: default

(b) At the prompt enter: tmsh

(c) At the TMSH prompt enter the command in the Persistence Value GUI.

i. modify sys db ui.statistics.modulestatistics.localtraffic.persistencerecords value true

A. Tab completion will make this a little easier

4. Now, in this window you can watch your persistence records. You may want to set Auto Refresh to
20 seconds.

5. In your other management GUI window go to www_pool and clear the member statistics.

(a) Open a browser session to your virtual server and refresh several times.

(b) How many members are taking traffic?

(c) Check you Persists Records window. Are there any persistence records?

i. If you are not Auto Refreshing, don’t forget to hit Refresh

81

(d) Refresh you web page prior to the Age column reaching 60. What happens?

Cookie Persistence (Cookie Insert)

1. Go to Local Traffic >> Profiles >> Persistence tab and hit Create

(a) Let’s name our profile my_cookie_insert (original isn’t it)

(b) Our Persistence Type will be Cookie

(c) This brings us to the Configuration section.

2. As you can see, the default Cookie Method is HTTP Cookie Insert, so we won’t have to modify the
Cookie Method

(a) The BIG-IP will also create a cookie name for you using a combination of “BIGipServer” and the
pool name the virtual server service. We will take this default also.

(b) We will use a session cookie. Which means the cookie is deleted when the browser is closed.

(c) Select Finished

(d) Now attach your cookie persistence profile to your virtual server’s Default Persistence Profile
by:

i. Go to Local Traffic >> Virtual Server >> www_vs >> Resources tab

ii. Set the Default Persistence Profile to my_cookie_insert

iii. Hit Update

82

(e) Whoa! Did you just get this error message?

(f) Remember what we said earlier about some Profiles requiring prerequisite Profiles? Since we
are looking in the HTTP header for the cookie the prerequisite for the Cookie Profile is the HTTP
profile.

3. We will have to go to the virtual server to add the HTTP profile, prior to adding the Cookie Persistence
profile.

(a) Select the Properties tab on your virtual server

(b) Go to HTTP Profile in the Configuration section and select the default HTTP (http) profile.

83

(c) Hit the Update button

(d) Now we can go back to the Resource tab and add our cookie persistence profile.

4. Testing cookie persistence.

(a) If you wish you can watch the member statistics to validate your persistence.

(b) Open a new browser session to your virtual server and refresh several times.

(c) Does the page ever change?

(d) Did you hit a different server?

(e) Refresh several times. Are you hitting the same server?

i. On the web page under HTTP Request and Response Information click the Display
Cookie link.

84

Archive your work in the file: lab3_lb_monitor_and_persist

3.2.4 Lab 4: Accelerating Applications Lab

Objectives:

• Assign client-side and server-side profiles

• Set up caching for your web site

• Set up compression for your web site

Lab Prerequisites:

• Prior to starting this lab remove the cookie persistence profile from your virtual server.

TCP Express

1. Set client-side and server-side TCP profiles on your virtual server properties.

(a) In some earlier version you would be required to select the Advanced menu to see the Client
and Server protocol profiles.

85

(b) If you chose to use the Advanced menu you would see a whole array of new options. There are
Basic and Advanced drop downs on many of the GUI menus. You can always see Advanced
menus by changing the preferences in System >> Preferences.

(c) From the drop-down menus place the tcp-wan-optimized profile on the client-side and the tcp-
lan-optimized profile on the server-side.

HTTP Optimization - RamCache Lab

1. Visit your virtual server’s web page and refresh it several times. Note the Source Node for the pictures
of the BIG-IPs. They change depending on where the connection is coming from. The Source Node
information is part of the picture.

2. Go to Local Traffic >> Profiles >> Services >> Web Acceleration or Acceleration >> Profiles >>
Web Acceleration

(a) Create a new profile named www-opt-caching using optimized-caching as the Parent Profile.

(b) Take all the defaults, no other changes are required.

3. Open up your www_vs virtual server.

(a) At the HTTP Profile drop down menu make sure http is selected.

(b) Under Acceleration at Web Acceleration Profile select your new caching profile; www-opt-
caching

86

(c) Clear the statistics on your pool and the refresh the main web page several times.

i. The pictures do not change. Why do you think that is?

ii. Go to your pool. Are all pool members taking connections?

4. Now go to Statistics >> Module Statistics >> Local Traffic on the sidebar. From the Statistics
Type drop-down menu select Profiles Summary

5. Select the View link next to the Web Acceleration profile type

87

6. You can get more detailed information on RamCache entries at the CLI level

(a) Log onto the CLI of your BIG-IP via SSH using the root account (user: root password: default).

(b) At the CLI go into tmsh at the (tmos)# prompt

(c) At the shell prompt enter show ltm profile ramcache www-opt-caching

HTTP Optimization - HTTP Compression Lab

1. Go to Local Traffic >> Profiles >> Service >> HTTP Compression or Acceleration >> Profiles >>
Web Acceleration

(a) Create a new profile, www-compress, using the wan-optimized-compression default profile.

2. Open up your www_vs virtual server.

(a) At the HTTP Profile drop down menu make sure http is selected

(b) At the Web Acceleration drop-down menu select None

i. For the purpose of this lab we don’t want caching interfering with our response headers

(c) At the HTTP Compression drop-down menu select the HTTP compression profile you just cre-
ated

3. Now open your virtual server’s web page and under Content Examples on This Host select the
HTTP Compress Example and Plaintext Compress Example link

(a) Now off to the statistics on the sidebar. Under the Local Traffic drop-down menu select Profiles
Summary

(b) Select the View link next to the HTTP Compression profile type

(c) On the web page under HTTP Request and Response Information select the Request and
Response Headers link.

i. Notice you no longer see the Accept-Encoding header in the Request Headers Received
at the Server section

88

Archive your work in a file called: lb4_acceleration

3.2.5 Lab 5: SSL Offload and Security

In this Lab we will configure client-side SSL processing on the BIG-IP

Objective:

• Create a self-signed certificate

• Create a client SSL profile

• Modify your HTTP virtual server to use HTTPS

• Add additional security to your HTTPS web server using the HTTP profile

We will create a self-signed certificate and key for a client SSL profile to attach to our virtual server

Creating a Self-signed certificate and key

1. Go to System >> Certificate Management >> Traffic Certificate Management >> SSL Certificate
List and select Create

Note: The default key size is 2048. You can save SSL resources on the server-side by lowering this
key size

89

(a) Enter:

i. Name: my-selfsigned-cert

ii. Issuer: Self

iii. Common Name: www.f5demo.com

iv. Fill out the rest any way you would like

Creating SSL Client Profile

1. Go to Local Traffic >> Profiles >> SSL >> Client menu and select Create

90

(a) Under General Properties

i. Name: my_clientssl_profile

(b) Under Configuration in the Certificate Key Chain section, select the Custom box and hit Add

i. In the Add SSL Certificate to Key Chain pop-up select:

A. Certificate: my-selfsigned-cert

B. Key: my-selfsigned-cert

ii. Select Add

(c) Hit Finished.

Building our New Secure Virtual Server

1. Go to Local Traffic >> Virtual Servers and hit the Create button or hit the “+” next to Virtual Servers

(a) Name: secure_vs

(b) Destination Address/Mask: 10.1.10.105

(c) Port: 443 or HTTPS

(d) SSL Profile (Client): my_clientssl_profile (the profile you just created)

(e) Source Address Translation: Auto Map (remember why we need this?)

(f) Default Pool: www_pool

91

(g) Default all other settings. (Notice you did not require an HTTP profile)

(h) Finish

2. Test our secure server. Go to you secure_vs at https://10.1.10.105

(a) If you want to watch member traffic, go to the www_pool and reset the statistics

(b) Browse to your secure virtual server

(c) What port did your pool members see traffic on?

Securing Web Applications with the HTTP profile

1. Let’s begin by creating a custom HTTP profile

(a) Go to Local Traffic >> Profiles >> Services, select HTTP and create a new profile

(b) Under General Properties

i. Name: secure-my-website

(c) Under Settings:

i. Set the Fallback Host: http://10.1.1.252 (this will take you an internal site)

ii. Fallback on Error Codes: 404 (fallback site if a 404 error is received)

iii. Response Headers Allowed: Content-Type Set-Cookie Location

iv. Insert XForwarded For: Enabled (because we talked about it earlier)

92

http://10.1.1.252

(d) Attach your new HTTP Profile to your secure (HTTPS) virtual server

2. Browse to your secure virtual server.

(a) Do web pages appear normal?

(b) Now browse to a bad page

i. For example,

A. What is the result?

(c) Go to the Request and Response Headers page. You should see a sanitized server response
at the bottom of the web page and the original client IP address

(d) You can compare the headers by accessing your HTTP virtual server at http://10.1.10.100

(e) While you are looking at the headers, check for the X-Forwarded-For header received by the
server

Note: Even though the data is encrypted between your browser and the virtual server, the LTM
can still modify the data (i.e. resource cloaking) because the data is unencrypted and decompressed
within TMOS

Archive your work in a file called: lab5_security

93

http://10.1.10.100

3.2.6 Lab 6: BIG-IP Policies and iRules

When clients attempt to access your secure_vs, you don’t want them to have to remember to type HTTPS
before the web site, but you also don’t want to open port 80 (HTTP) on your web servers as that is just
asking for trouble. To avoid this issue, you will be creating an HTTP virtual server that will redirect HTTP
to HTTPS and the secure_vs. Also, you will write an iRule and a BIG-IP policy that will retrieve images
from a different pool of servers than the default pool attached to the virtual server. This will give you a
simple comparison between the two methods. You will use a policy on the HTTP server and an iRule on the
HTTPS virtual server.

Using the Built-in https_redirect iRule

1. While it would be easy to write your own redirect iRule, note that F5 has one prebuilt that you can use

(a) Example of simple redirect iRule:

when HTTP_REQUEST {
HTTP::redirect https://[HTTP::host][HTTP::uri]

}

2. Go to Local Traffic >> iRules

(a) In the search box at the top of the list of iRules, type redirect and hit Search.

(b) Open the iRule and take a quick look. This is an F5 Verified and supported iRule.

3. Create your HTTP-to-HTTPS redirect virtual server.

(a) Go to Local Traffic >> Virtual Servers and create a new virtual server.

i. Name: redirect_to_secure_vs

ii. Destination: <same IP as secure_vs>

iii. Service Port: 80 (HTTP)

iv. Source Address Translation: None <you don’t need this as this traffic is going nowhere>

v. iRule: _sys_https_redirect

vi. Hit Finished

A. WOW! That didn’t go too far did it. You just got an error. If you are going to redirect
the HTTP request, you need the HOST and URI information and that requires the HTTP
protocol

(b) In the Configuration section make sure the default http profile is added to the virtual server

(c) HTTP Profile: http

(d) Select Finished

4. Test your policy by going to http://<ip address of your virtual>

(a) You should be redirected to the HTTPS virtual server

(b) As you can see, very small iRules can make a very big difference

94

Use a BIG-IP Policy to retrieve images from a different pool

1. Create a new pool named image_pool, use the http monitor for status, and add one member
10.1.20.14:80

2. First you will create your policy container and set your match strategy

(a) Try to do this using the instructions, but a screen shot of the policy is available in the Appendix
at the end of the lab guide if you would like it.

3. Go to Local Traffic >> Policies >> Policy List and select Create

(a) Policy_Name: access_image_pool

(b) Strategy: Execute first matching rule

(c) Create Policy

4. Now you can create/view policy rules by selecting Create

(a) Name: get_jpegs

(b) In the box under Match all of the following conditions: select the to the right of All Traffic

i. Use the drop-down menus to look at the HTTP URI and check if it ends_with an image type

ii. Look for JPEGs by adding jpg in the box under the any of box and selecting Add

(c) Under Do the following when the traffic is matched, build the following operation.

i. Forward Traffic to the pool named image_pool

(d) Save

95

5. The policy is saved in Draft form and is not available until Published. To publish the policy:

(a) Select the Save Draft Policy drop-down menu and select Save and Publish Policy

6. Go to the Resources section of your www_vs virtual server and select Managed over the Policies
box

(a) Move access_image_pool for the Available box to the Enabled box

7. Now test your change by browsing to http://10.1.10.100

(a) If your policy is working correctly, all of the images under F5 Platform List should be from NODE
#4

(b) Other images are PNG images and have a different extension

96

http://10.1.10.100

Use an iRule to Retrieve Images From a Different Pool

1. Now you will use an iRule to perform the same image retrieval. Your image_pool is already created

2. Go to Local Traffic >> iRules and select Create

(a) Name: access_image_pool

(b) In the Definition section enter the following:

(c) This activity is not meant to be “cut and paste”. We want you to get comfortable and familiar with
typing iRules inside the GUI.

i. Try hovering the cursor over a command or event, such as, HTTP_REQUEST or HTTP:uri.
You will see a definition of the item. For example:

97

3. Save your iRule and go to the Resources section of your secure_vs and select iRules >> Manage

(a) Move your access_image_pool iRule into the Enabled box

4. Test your secure_vs virtual by going to https://10.1.10.105

(a) The results should be the same as before

5. Extra Credit! Change both the policy and iRule to access the image_pool for png file types

(a) You should notice one is easier to update than the other

3.2.7 Lab 7: Support and Troubleshooting

In this lab, you will review your BIG-IP using iHealth and perform some basic troubleshooting commands

Objective:

• Collect a QKView and upload it to http://ihealth.f5.com and review the results

• Perform a TCPDump to watch traffic flow

• Obtain web page information via Curl

Archive the current configuration and perform a health check using a QKview

1. Obtain a QKView. Go to System >> Support

(a) Click New Support Snapshot

Note: If you have an iHealth account, you can choose to use the Generate and Upload QKview
to iHealth option as long as your management port has Internet access. For this exercise, we
will skip this.

(b) From the drop-down, select Generate QKview

(c) Select Download and download the QKView to your PC

Note: If you leave the Support page and return you will still the Support Snapshot screen. You
CANNOT create another QKView or TCP Dump until the QKView is deleted.

2. Import the QKView into iHealth.

98

http://ihealth.f5.com

(a) Go to http://ihealth.f5.com. If you don’t have an account, now is the time to create one and
then skip to the next section “Troubleshoot using TCPDump or Curl” because it will take
time for your account set up.

(b) Select the Upload button and upload the QKView file you download from your BIG-IP

(c) Once the file is uploaded, you can click on the hostname to view you the heuristics

(d) Note the Diagnostics. Go to Diagnostics >> Critical on the side-bar.

(a) Example: The configuration contains user accounts with insecure passwords is because
we are using default passwords

(b) Select Network >> Virtual Servers, then click on the small white triangles to expand the view or
go to Pools, then Pool Members to continue to expand the view.

(c) This is a little more detailed than Local Traffic >> Network Map

(a) If you want to see some interesting CLI commands, go to Commands >> Standard and expand
tmsh then LTM and click on show /ltm virtual toward the bottom

(b) Under Files >> config you can view the bigip.conf file and see the command lines you used for
you build

i. All of the log files are here too

(c) Feel free to just poke around

Troubleshoot using TCPDump or Curl.

1. Go to your www_vs (10.1.10.100) virtual server and set Source Address Translation to None.

(a) Now browse the web site. You will not be able to access it even though the status of the virtual is
available.

i. Because the BIG-IP is not the server’s default gateway of the servers their response goes
around the BIG-IP.

(b) The web administrator tells you everything is fine as far as he can see and thinks the issue is
with the BIG-IP, because they ALWAYS think the issue is with the BIG-IP

(c) You begin by debugging the client connections to the web servers through the BIG-IP using
TCPDump

2. SSH to the management port of your BIG-IP.

Attention: Remember the BIG-IP is a full proxy. You will need two dumps and therefore two SSH
windows for the client-side connection and the server-side connection.

(a) First let’s see if we are hitting the virtual server. At the Linux CLI prompt:

(b) tcpdump –i <client vlan name> host –X –s128 10.1.10.100 and port 80

i. This is a little overkill, but a good example of syntax. We will only look at traffic headed for
the virtual server. We will see the first 128 bytes (-s128) in ASCII (-X).

(c) Go to your browser and attempt to access the virtual server. You should see something like this:

17:38:40.051122 IP 10.1.10.1.43932 > 10.1.10.245.http: S 522853636:522853636(0)
win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK>

0x0000: 0ffe 0800 4500 0034 0a40 4000 4006 0699E..4.@@.@. . .

99

http://ihealth.f5.com

0x0010: 0a80 0a01 0a80 0aeb ab9c 0050 1f2a 1d04P.*..

0x0020: 0000 0000 8002 2000 3d10 0000 0204 05b4=.

0x0030: 0103 0302 0101 0402

17:38:40.051169 IP 10.1.10.245.http > 10.1.10.1.43932: S 245310500:245310500(0)
ack 522853637 win 4380 <mss 1460,sackOK,eol>

0x0000: 0ffe 0800 4500 0030 27ef 4000 ff06 29edE..0’.@. . .).

0x0010: 0a80 0aeb 0a80 0a01 0050 ab9c 0e9f 2424 P. . . .$$

0x0020: 1f2a 1d05 7012 111c 2a0e 0000 0204 05b4 .*..p. . . *.

0x0030: 0402 0000

17:38:40.053644 IP 10.1.10.1.43932 > 10.1.10.244.http: . ack 1 win 64240

0x0000: 0ffe 0800 4500 0028 0a41 4000 4006 06a4E..(.A@.@. . .

0x0010: 0a80 0a01 0a80 0aeb ab9c 0050 1f2a 1d05P.*..

0x0020: 0e9f 2425 5010 faf0 7018 0000 ..$%P. . . p. . .

17:38:40.053648 IP 10.1.10.1.43932 > 10.1.10.245.http: P 1:416(415) ack 1 win 64240

0x0000: 0ffe 0800 4500 01c7 0a42 4000 4006 0504E. . . .B@.@. . .

0x0010: 0a80 0a01 0a80 0aeb ab9c 0050 1f2a 1d05P.*..

0x0020: 0e9f 2425 5018 faf0 43c5 0000 4745 5420 ..$%P. . . C. . . GET.

0x0030: 2f20 4854 5450 2f31 2e31 0d0a 486f 7374 /.HTTP/1.1..Host

0x0040: 3a20 3130 2e31 3238 2e31 302e 3233 350d :.10.1.10.245.

(d) Well you are hitting the virtual server so let’s look a little deeper and expand our dump.
Your original client IP is in the first line of the dump 16:44:58.801250 IP 10.1.10.1.41536 >
10.128.10.245.https

3. In the second SSH window we will do an expanded tcpdump for the sake of interest

(a) tcpdump –i <server vlan name> -X –s128 host <client IP>

(b) Hit your virtual server again. As you can see, we are sending packers to the pool members. They
just aren’t responding so we can reasonably suspect it’s a server issue.

4. It could be a port issue. Let’s check to see if the server is responding on port 80. On the BIG-IP, in an
SSH window:

(a) Do a <ctrl-c> to escape out of tcpdump, if you are still in it, and use curl to test the server

(b) curl –i <server ip>

(c) “-i” to dump the HTTP header information also

[root@bigip249:Active:Standalone] config # curl -i 10.1.20.11

HTTP/1.1 200 OK

Date: Sat, 26 Jul 2014 19:25:28 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.4.9-4ubuntu2.2

Vary: Accept-Encoding

Content-Length: 3819

100

mailto:root@bigip249

Connection: close

Content-Type: text/html

<html>

<head>

<TITLE>Using virtual server 10.1.20.11 and pool member 10.1.20.11 (Node #1)</TI-
TLE>

<meta http-equiv=”Content-Type” content=”text/html; charset=us-ascii” />

(d) The server is responding to the BIG-IP when directly connected, but not through the virtual
server. Sounds like the server is routing around the BIG-IP, which means the BIG-IP is not the
default gateway.

5. Turn SNAT Automap back on the www_vs virtual server

3.2.8 Lab 8: Device Service Clusters (DSC)

We want to familiarize you with the concept of Device and Traffic Groups as well as the building of Active-
Standby, Active-Active BIG-IP pairs. While there is a wizard, for this lab, configuration will be done manually.
The wizard will only build A/S HA groups. In order to build Active-Active and beyond a pair you will need to
know the four steps to add a device object to a cluster.

Base Networking and HA VLAN

You will be creating a high availability cluster using the second BIG-IP (bigip2) in your lab, so let’s prep our
current BIG-IP and create a high availability VLAN.

1. On BigIpA.f5agility.com archive your configuration in case you need to revert

2. Go to System >> Archives and create a new archive.

3. You will be using your third interface (1.3) for Network Failover and ConfigSync. This requires certain
ports to be open on the Self IP; TCP port 4353 for ConfigSync, TCP port 1026 for Network Failover
and TCP port 6699 for the Master Control Program.

(a) Build a new untagged VLAN ha_vlan on interface 1.3

(b) Add a self-IP address to the VLAN, 192.168.20.1 net mask 255.255.255.0.

(c) Under Port Lockdown, select Allow Default, to open ports required for HA communications.

4. Go to https://10.1.1.246 which is BigIpB.f5agility.com and login.

5. Bigip102 has already been licensed and provision. You will need to set up the base networking.

Interface Untagged VLAN Self IP Netmask
1.1 client_vlan 10.1.10.246 255.255.255.0
1.2 server_vlan 10.1.20.246 255.255.255.0
1.3 ha_vlan 192.168.20.2 255.255.255.0

6. Set Port Lockdown to Allow Default

7. Build the default gateway destination 0.0.0.0, mask 0.0.0.0, gateway ip address 10.1.10.1

8. What is the status your BIG-IPs? Check the upper left-hand corner next to the F5 ball.

101

https://10.1.1.246

Configure HA

1. On each BIG-IP, prior to building the Device Trust, it is recommended to renew the BIG-IP self-signed
certificate with valid information and regenerate the local Device Trust certificate

2. Under System >> Certificate Management >> Device Certificate Management >> Device Certifi-
cate, select the Renew. . . button

(a) Common Name: <the Hostname of the BIG-IP in the upper left corner>

(b) Country: United States (or your country of preference)

(c) Lifetime: 3650

3. Lifetime is important. If your cert expires your HA setup will fail

4. Select Finished. Your browser will ask to exchange certs with the BIG-IP again

5. Under Device Management >> Device Trust >> Local Domain select Reset Device Trust. . .

6. In the Certificate Signing Authority select Generate New Self-Signed Authority and hit Update

7. On each BIG-IP configure the device object failover parameters the BIG-IP will send to other BIG-IPs
that want to be a part of a sync-only or sync-failover group

(a) Under Device Management >> Devices, select the local BIG-IP. It will have the (Self) suffix.

(b) Under Device Connectivity on the top bar select:

(c) ConfigSync

(d) Use the Self IP address of the HA VLAN for your Local Address.

(e) Failover Network

8. In the Failover Unicast Configuration section select the Add button

9. Use the Self IP address the HA VLAN for your Address

10. Leave the Port at the default setting of 1026

11. Note: Multicast is for Viprion chassis’ only

12. Mirroring

13. Primary Local Mirror Address: use the Self IP address of the HA VLAN for your

14. Secondary Local Mirror Address: None

15. On bigip01.f5agility.com build the Device Trust.

(a) Under Device Management >> Device Trust >> Device Trust Members and select Add to add
other BIG-IP(s) you will trust.

(b) Device IP Address: <management IP address of the BIG-IP to add>

16. You could use any Self IP if the out-of-band management interface is not configured.

(a) Enter the Administrator Username and Password of the BIG-IP you are trusting

(b) Select Retrieve Device Information

17. The certificate information and name from the other BIG-IP should appear

(a) Select Device Certificate Matches to proceed

(b) Select Add Device

102

18. On each BIG-IP check the other BIG-IP in the Device Trust Members list. Is all the information
there?

19. If some information is missing delete the trust and try again

20. What are the statuses of your BIG-IPs now?

21. They should be In Sync. But wait! Although they show in sync, only a Sync-Only group was created.
We now need to create a Sync-Failover group to facilitate failover.

22. On BigIpA.f5agility.com create a new Sync-Failover device group

(a) Under Device Management >> Device Group create a new device group

(b) Name: my-device-group

(c) Group Type: Sync-Failover

(d) Add the members of the group to the Includes box

(e) Check the Network Failover setting for the group

23. Check Device Groups on each BIG-IP

24. Did you have to create the Device Group on the other BIG-IP?

25. Is the full configuration synchronized yet? (No! Only the Device Group is sync’d)

26. What is your sync status?

27. It should be Awaiting Initial Sync

(a) Click on the sync status or go to Device Management >> Overview (or click on Awaiting Initial
Sync) of the BIG-IP with the good/current configuration

(b) Click the device with the configuration you want to synchronize. Sync Options should appear.

(c) Synchronize to Group. It could take up to 30 seconds for synchronization to complete.

Note: During the Awaiting Initial Sync phase either BIG-IP can perform the synchronization and the other
BIG-IP will be overwritten.

1. What are the statuses of your BIG-IPs? Do you have an active-standby pair?

2. Are the configurations the same?

3. Now that you have created your HA environment, HA selections will show up for SNAT addresses (not
tied to your base network), persistence profiles and connection mirroring on virtual servers.

(a) Go to your Active BIG-IP

(b) Go to your persistence profile my-src-persistence and check the Mirror Persistence box

(c) Go to your www_vs virtual server and set the Default Persistence Profile to my-src-
persistence

103

(d) Synchronize your changes. Did the changes sync?

(e) On each BIG-IP go to Module Statistics > Local Traffic and bring up the persistence record
statistics

(f) Go to the home page of your www_vs web service (http://10.1.10.100). Refresh a few times.

(g) Check the persistence records on each of your BIG-IPs, you should see the records are mirrored
on each device

4. Go to Device Management >> Traffic Groups. As you can see the default traffic group “traffic-
group-1” already exists.

(a) Select traffic-group-1. Check out the page information and then select Force to Standby.

(b) What are the statuses of your BIG-IPs? Go to your web page. What is the client IP?

(c) Go to your self-IP addresses. What traffic group are they in? What does it mean?

(d) Archive your work.

3.2.9 Bonus Lab – Traffic groups, iApps and Active-Active

If you have time, this is a bonus lab. Here you will create a new traffic group. You will use iApps to create
a new HTTP application that reside in that address group and you will create a floating IP address that will
be used as the default gateway that also resides in that traffic group.

Building a new traffic group and floating IP.

1. On your Active BIG-IP, go to Device Management >> Traffic Groups and hit Create

(a) Use the f5.http template, which was designed for general web services

i. Name: iapp_tg

ii. Take the defaults for the rest.

2. Add a floating Self-IP to the server_vlan. Go to Network >> Self IP

(a) Name: server_gateway

(b) IP Address: 10.1.20.240

(c) Netmask: 255.255.255.0

(d) VLAN/Tunnel: server_vlan

(e) Traffic Group: iapp_tg (floating)

Building an HTTP application using an iApp template.

1. Go to iApp >> Application Services and hit Create

(a) Use the f5.http template, which was designed for general web services

i. Set the Template Selection to Advanced

ii. Name: my_new_iapp

iii. Traffic Group: iapp_tg (floating)

A. You will have to uncheck the Inherit traffic group from current partition / path.

104

http://10.1.10.100

iv. Under Template Options

A. Select the Advanced – Configure advanced options for the configuration mode

v. Under the Network tab

A. How have you configured routing on your web servers? Servers have a route to the
clients through the BIG-IP system

B. In other words, the BIG-IP is the default gateway for the servers

C. Otherwise the template would use SNAT by default

vi. Under Virtual Server and Pools

A. Your virtual server IP is 10.1.10.110

B. Your hostname will be www.f5agility.com <http://www.f5agility.com> because you have
to put one in.

C. Create a new pool with the members 10.1.20.14:80 and 10.1.20.15:80

D. If you hit add after the last pool member and have a new row, you will need to
delete the row prior to finishing

vii. Hit Finished at the bottom of the page

2. Go to iApp >> Application Services and select the new application you created

(a) Select Components from the top bar

i. Here you will see all the configuration items created by the iApp

ii. Do you see anything created that you weren’t asked about?

3. Remember the concept of strictness? Let’s test that out

(a) Go to Local Traffic >> Pools >> Pool List

i. Select the pool created by your iApp: my_new_iapp_pool

ii. Attempt to add 10.15.11.13:80 to your my_new_iapp_pool

A. Did it fail?

(b) Go to your iApp and select Reconfigure from the top bar

i. Now attempt to add your new pool member

ii. You can check the Components tab to verify your success

SYNCHRONIZE YOUR CHANGES

Active-Active Setup

1. Now, let’s make our sync-failover group active-active. On the Active BIG-IP:

(a) Go to Device Management >> Traffic Groups

i. Go to you iapp_tg traffic group.

ii. Under Advanced Setup Options

A. You are going to set up iapp_tg to prefer to run on bigip02.f5agility.com and auto
failback to bigip02 if bigip02 should go down and come back up later.

B. Is this normally a good idea?

105

iii. Failover Method: HA Order

iv. Auto Failback: <checked>

v. Failover Order: bigip102.f5agility.com then bigip01.f5agility.com

vi. Ensure you synchronized the change to the other BIG-IP

2. If the traffic group is active on the wrong BIG-IP initially you will have to do a Force to Standby on the
traffic group to make it active on the BIG-IP you want it on by default

(a) What is the ONLINE status of each of your BIG-IPs?

(b) Reboot the BIG-IP with your second traffic group on it. Watch to see if the application becomes
active on the other BIG-IP during the reboot and if it falls back to the Default Device once the
BIG-IP has come back up.

(c) You can verify this by checking your traffic groups or going to the web server and looking at the
client IP

106

4
Class 4: Troubleshoot with tcpdump and Wireshark

Welcome to the troubleshoot with tcpdump and Wireshark documentation.

4.1 F5 tcpdump and Wireshark

This class covers the following topics:

• tcpdump switches and filters

• F5 specific tcpdump commands

• F5 Wireshark Plugin

• Using the F5 Wireshark Plugin

• SSL decrypt packet capture

We will be using a jumpbox to connect to the lab environment. Click on the lab link given out during class
and select the RDP option to connect to the lab box.

The credentials will be the following:

user: f5student

password: f5DEMOs4u

4.1.1 tcpdump Switches

The tcpdump command has several switches with different purposes. The following are some of the most
commonly used.

You can run these commands from the Jumpbox to see the output in our lab environment or you can just
read through the information, it is up to you. To launch the SSH connection to the BIG-IP double click on
the Putty shortcut on the desktop. Then connect to the BIGIP01 instance. The credentials are:

user: root password: default

1. tcpdump -D

To list the available interfaces for packet capture use tcpdump -D

The ‘any’ interface will be taken by TMM and made into the interface ‘0.0’

107

2. tcpdump -i

To capture traffic on a specific interface use tcpdump -i <interface name>. i.e. ‘tcpdump -i 0.0’

When using 0.0 for the interface on a capture make sure to use a capture filter or you will get too much
information and may impact performance on the F5.

3. tcpdump -n

Use tcpdump -n to disable name resolution of host names

4. tcpdump -nn

Use tcpdump -nn to disable name resolution of both host names and port names

5. tcpdump -X

Use tcpdump -X to show output including ASCII and hex. This will making reading screen output
easier.

6. tcpdump -w

Use tcpdump -w to write the packet capture to a capture file that is readable in an application such as
Wireshark.

7. tcpdump -s

Use ‘tcpdump -s0’ to capture the full data packet. The number following the ‘s’ indicates the number
of bits to capture of each packet. 0 indicates all.

108

4.1.2 tcpdump Filters

This section is for informative value and nothing will be done in the lab environment.

When running tcpdump capture from the F5 you should always use a filter to limit the volume of traffic you
will gather.

1. Host Filters

tcpdump host 192.168.2.5 This will filter the packet capture to only gather packets going to or coming
from the host 192.168.2.5.

tcpdump src host 192.168.2.5 This will filter the packet capture to only gather packets coming from
192.168.2.5.

tcpdump dst host 192.168.2.5 This will filter the packet capture to only gather packets going to
192.168.2.5.

2. Port Filters

tcpdump port 443 This will filter the packet capture to only gather packets with a source or destination
of port 443.

tcpdump src port 1055 This will capture traffic being sourced from port 1055.

tcpdump dst port 443 This will capture traffic destined for port 443.

4.1.3 F5 Specific tcpdump Switches

This section is for informative value and nothing will be done in the lab environment.

F5 has added some F5 specific switches to the tcpdump utility on the F5. These switches give additional
information on your packet captures. These switches are places after the interface option in the command
line as follows:

1. :n gives low details

(a) for example: tcpdump -nni 0.0:n -s0 -w/var/tmp/capture.pcap

(b) This will give basic information such as whether the captured traffic is ingress or egress
to the F5. It will also give the TMM instance the traffic is on as well as the Chassis slot
processing the traffic. This option also lists the virtual server name that processes the
traffic.

2. :nn gives medium details

(a) for example: tcpdump -nni 0.0:nn -s0 -w/var/tmp/capture.pcap

(b) This option will give all the low detail information plus the following:

• Flow ID number

109

• Peer Flow ID number

• TCP RST cause

• Flow type

• HA unit

• Ingress Slot

• Ingress port

• Priority

3. :nnn gives high details

(a) for example: tcpdump -nni 0.0:nnn -s0 -w/var/tmp/capture.pcap

(b) This option will give all the low and medium details plus the following

• Peer IP Protocol

• Peer VLAN

• Peer Remote address

• Peer local address

• Peer remote port

• Peer local port

110

4.1.4 Install the F5 Wireshark Plugin

Wireshark version 2.2.14 is installed on the jumpbox.

You can download the F5 Wireshark plugin from devcentral.f5.com here: https://
devcentral.f5.com/d/wireshark-plugin?lc=1. In the lab the plugin is already downloaded to
/home/f5student/Downloads/wireshark/.

1. Start Wireshark by double clicking the shortcut on the desktop.

2. Click on Help and then About Wireshark.

3. Click on the plugins tab and check to see what directory the plugins are installed to.

4. Open the plugin directory in file explorer.

5. Copy the F5 wireshark plugin that has been copied to /home/f5student/Downloads/wireshark/

(a) The jumpbox client is Ubuntu 64 bit.

(b) Open the Linux64-2.2.0 folder and copy the f5ethtrailer.so to the plugin directory determined in
step 3.

(c) In order to move the file you will need to elevate permissions. The easiest way to do this is from
the command line terminal. Use the command:

1 sudo cp ./Downloads/wireshark/Linux64-2.2.0/f5ethtrailer.so /usr/lib/x86_64-
→˓linux-gnu/wireshark/plugins/2.2.6/

6. Depending on your OS and Wireshark version, you will need the correct plugin files from the correct
folder.

7. Shutdwon Wireshark and restart it.

8. Click on Help and then About Wireshark.

9. Check the plugins tab again and make sure the F5 plugin is installed.

111

https://devcentral.f5.com/d/wireshark-plugin?lc=1
https://devcentral.f5.com/d/wireshark-plugin?lc=1

4.1.5 Taking a Capture from the F5

Let’s take the information we have gathered so far and take a packet capture from the F5.

1. Start Putty and launch the bigip01 SSH session.

2. Login as root user. Password is ‘default’.

3. List the destination address of the virtual on the F5 using the following command:

1 tmsh list ltm virtual hackazon.f5demo.com.app/hackazon.f5demo.com_vs destination

4. Now take the destination address and compose a tcpdump command to track the traffic coming to this
virtual server:

1 tcpdump -nni 0.0:nnn -s0 -w/var/tmp/hackazon.pcap host 10.1.10.201

5. After starting the capture, start Chrome and click on the Hackazon bookmark. Browse around the site
following a couple links. Next go to the address bar and type in: “https://hackazon.f5demo.com:8080”.
Then stop the capture in the putty session by using ‘Ctrl+c’.

6. Open a terminal screen on the Ubuntu jumpbox. Change Directory to the Downloads folder.

7. Run the following command:

1 sudo scp root@10.1.1.245:/var/tmp/hackazon.pcap ./

8. You will be prompted to save the SSH keys. Type yes and hit enter, then enter the root password for
the F5.

9. Now open Wireshark and open the hackazon.pcap file you just copied from the F5.

10. If you run into issues copying the hackazon.pcap file to the jumpbox you can use the already created
file in the Downloads folder hackazon2.pcap.

4.1.6 Configuring/Using Wireshark F5 Plugin

We will start with what kind of unique information is gathered through the plugin and using tcpdump on the
F5.

1. Start by selecting packet 1 in Wireshark.

112

https://hackazon.f5demo.com:8080

2. Notice in the middle section of wireshark you will see the tcpdump command being run. You will also
see the version of the F5 code, the F5 hostname, and the Platform ID number (in this case Z100 for
Virtual Edition).

3. Now we will use a wireshark display filter to see a specific request. Add ‘tcp.port == 80’ in the display
filter field and hit enter.

4. In the capture above packet 53 shows the GET requests to the website. In your capture it will be a
different packet number but you can see in the Info area that it is a GET request.

5. Right click on the GET request and go to protocol preferences, and then populate fields for other
dissectors. This makes it so when applying a display filter it applies to both the client and server sides
of the F5 connection. We will cover this in the F5 High Details section.

113

4.1.7 Follow F5 Conversation

1. Clear the display filter and hit enter. Right Click on one of the packets in the capture and select
Conversation Filter and then F5 TCP. This will automatically develop a display filter to show the client
and server sides of a conversation going through the BIG-IP device.

114

4.1.8 F5 Low Details

1. Apply a new display filter of ‘tcp.port == 80’ to the capture.

2. Select the packet with the GET request in the info field.

3. In the middle section Expand F5 Ethernet Trailer.

4. Then expand F5 Low Details.

5. Notice the Ingress value is True (IN). This is from the perspective of the F5. The traffic is inbound to
the F5.

6. The low details also gives the Slot value (always be 1 for an appliance). The TMM number in the
image is 3.

7. The most important value here is the VIP. In this case it is the /Com-
mon/hackazon.f5demo.com_http_vs. Notice this is the port 80 VIP for this particular destination IP.
The VIP is configured with a redirect to SSL.

8. The next packet in the capture is a HTTP 302 redirect to the SSL vip.

4.1.9 F5 Medium Details

1. Now expand the F5 Medium Details.

2. A majority of the information in the Medium Details will be used by F5 support in analyzing packet
flow. The important parts to notice are the Flow ID, Peer ID, and RST Cause.

115

3. The Flow ID and Peer ID. These are unique identifiers for the two flows of the connection. They are
only unique within a specific slot and tmm combination. A flow ID may be reused, so it is possible
to see unrelated packets with the same flow ID in a capture before or after the connection you are
interested in.

4. In the display filter type ‘tcp.port == 8080’. Now Select one of the RST packets and expand the F5
Medium Details. Notice there is a RST Cause value. In this case the RST Cause is “No local listener”.
This indicates that there is no VIP on the F5 that matches the connection request. There are other
RST causes. In the F5 Medium Details you will only see RST Cause for packets that were RST by the
F5.

4.1.10 F5 High Details

1. Now Expand the F5 High Details on one of the SSL sessions data packets. (You can type in a display
filter of ‘f5ethtrailer.peeraddr’ to retrieve the session we are looking for). Make sure you select a packet
that has Application Data in the Info field.

2. The F5 High Details contains a lot of valuable information. In the example above we see that the Peer
IP Protocol is 6 or TCP.

3. The Peer VLAN is going to be the VLAN that the traffic enters the F5 from. In the example this is
VLAN 4093 which is the external VLAN.

4. The Peer remote address for an Outbound packet will be the Application server IP address, if it were
Inbound the address would be the Client Address. The Peer Remote address will always be an

116

address that is not on the BIG-IP directly, in this case 10.1.20.20. The second Peer remote address
is the IPv6 version of the address.

5. The Peer local address is the SNAT address for this particular Virtual Server, in this case 10.1.20.240.
Once again the IPv6 version is below that.

6. Next we see the Peer remote port. The remote port is the port that the traffic is coming from on the
remote side. In this case the application server is responding from port 80.

7. Next we have the Peer local port. This is the port the F5 is talking with the remote side on. In this
case it is port 49925. If this were a request coming from the client, the local port would be 443 as the
Virtual Server is configured with port 443 and the remote port would be a port > 1024.

8. The F5 High Details provide great information on what pool member is selected on a particular con-
versation that you are tracking down. This makes it possible to determine which server may be having
issues in an application problem.

4.1.11 High Details and Other Field Dissectors

1. In order to see how the other field dissectors becomes useful, enter a display filter of
‘ip.addr==10.1.20.240’.

2. Notice that the Source and Destination fields in the results do not contain the ip address of
10.128.20.210 as shown in the image. In the lab you won’t see the IP 10.1.20.240 in the source
or destination fields.

3. Is the display filter broken?

4. No it is not. Notice in the F5 High Details that the Peer remote address is 10.128.20.210. This is the
pool member selected for the pool in the virtual server.

5. With the other field dissectors value turned on in Wireshark, you can set a display filter of the pool
member you may be troubleshooting and see which virtual is being selected on the traffic. Or you
can set a display filter of the client and see all the traffic to the pool members even with a SNAT pool
selected.

117

4.1.12 SSL Decryption

There are two ways to decrypt the SSL traffic. Both ways require that you perform one of the following tasks
before you take the TCP Capture.

SSL Decrypt from Windows Client

1. To use the client to decrypt you must add a System Variable to log the session key data for decryption.
On a windows client you would go into the Environment Variables and add a SSLKEYLOGFILE value
to a text file on the machine as in the following image.

2. Once the system variable has been put in place you can then launch a web browser and start the
traffic that you want to analyze.

3. Once the traffic has been captured you will import the capture file into Wireshark and configre the SSL
options to use the pre-master key file defined in the system variables.

SSL Decrypt from Linux Client

1. On the Ubuntu client open a terminal window and run the following commands:

118

1 touch session-key.log
2 export SSLKEYLOGFILE=/home/f5student/session-key.log
3 chromium-browser

2. This will launch the Chrome browser and once you close the browser it will stop logging the SSL
Session key data.

3. Once the traffic has been captured you will import the capture file into Wireshark and configure the
SSL options to use the session-key.log file.

SSL Decrypt from F5

More often you will not have access to modify the client in order to capture the SSL session data. The other
option is to get the pre-master session data from the F5 itself by doing the following.

1. Configure a new iRule as follows:

1 when CLIENTSSL_HANDSHAKE {
2 log local0. "RSA Session-ID:[SSL::sessionid] Master-Key:[SSL::sessionsecret]"
3 }
4

5 when SERVERSSL_HANDSHAKE {
6 log local0. "RSA Session-ID:[SSL::sessionid] Master-Key:[SSL::sessionsecret]"
7 }

2. Apply this new iRule to the virtual server. In our lab environment the iRule has already been created
and applied to the Virtual Server.

3. You can now start a tcpdump and surf the website.

4. After you have stopped the tcpdump, you will now need to SSH to the F5 and run the following
command:

grep Session-ID /var/log/ltm | sed 's/.*\(RSA.*\)/\1/' > /var/tmp/session.pms

5. Now the session.pms file can be pulled from the F5 and put into Wireshark.

4.1.13 Decrypting SSL in Wireshark

Now you need to have your pre-master key file and your capture moved to your local box. To do this do the
following:

1. Open Terminal on the Ubuntu Jump Box.

2. Change directory to Documents by typing: ‘cd Documents’.

3. Run the following commands:

1 sudo scp root@10.1.1.245:/var/tmp/session.pms ./
2 sudo scp root@10.1.1.245:/var/tmp/hackazon.pcap ./
3

4 After each of these commands you will be prompted to accept the SSH keys. Type
→˓yes to continue. Then you will be prompted for the F5 root password. Type that
→˓in as well.

4. Now open Wireshark.

5. Once Wireshark is open go to Edit/Preferences.

119

6. Expand on the left side, Protocols, then select SSL.

7. Browse to the pre-master session key file and click on save.

8. Open in Wireshark the pcap file you pulled down from the F5 BIG-IP.

9. Right click on one of the SSL packets and select Follow, SSL Stream.

120

10. You will now see unencrypted SSL data in the capture as follows:

121

122

5
Resilient Data Center Architectures with F5 BIG-IP

This class covers covering common High Availability, BGP configurations on the BIG-IP.

Expected time to complete: 3 hours

5.1 Getting Started

You will be using an ssh client to access all components of this lab. All configuration will be done via the
CLI.

Please follow the instructions provided by the instructor to start your lab and access your jump host.

Note: All work for this lab will be performed exclusively from the Linux Jumphost via ssh.

No installation or interaction with your local system is required. If you do not have an ssh client you can install the freeware putty.
https://putty.org

123

https://putty.org

5.1.1 Lab Topology

The following components have been included in your lab environment:

• 4 x F5 BIG-IP VE (v13.1)

• 7 x CSR 1000v Virtual Routers

• 1 x Linux Webserver (xubuntu 14.04)

• 1 x Linux Jumphost

Lab Components

The following table lists the management IP Addresses and Credentials for all components:

124

Table 5.1: Management interfaces. All other interfaces are on dia-
gram

Host Management IP Credentials
Linux Jumphost <Public IP on work-

sheet>
ubuntu:Agility2018f5

W_A_BIGIP 192.168.1.3 root:default
W_B_BIGIP 192.168.1.6 root:default
W_CPE_A_CSR1K 192.168.1.9 root:default
W_CPE_B_CSR1K 192.168.1.7 root:default
E_A_BIGIP 192.168.1.8 root:default
E_B_BIGIP 192.168.1.4 root:default
E_CPE_A_CSR1K 192.168.1.14 root:default
SP_A_CSR1K 192.168.1.10 root:default
SP_B_CSR1K 192.168.1.5 root:default
SP_C_CSR1K 192.168.1.15 root:default
Web Service 10.3.99.200

Note: Additional Credentials - enable password or priveleged mode on the CSR1000v routers: san-fran

Priveleged mode allows you to run commands that might be disruptive to network traffic or enter configura-
tion mode.

5.1.2 BIG-IP CLI Primer

bash shell

Default linux shell when you log in to the BIG-IP as root

Common commands you can run from here:

• ping

• traceroute

• tcpdump

• imish (used to access the ZebOS router shell)

• tmsh (used to access the traffic management shell for BIG-IP configuration)

tm shell (tmsh)

From bash any command you know the syntax of can be entered directly by preceding it with the ‘tmsh’
command

[admin@BIGIP131:Active:In Sync] ~ # tmsh run sys failover standby

For context based help and tab completion you can enter the ‘tmsh’ command and go directly to the prompt.

[admin@BIGIP131:Active:In Sync] ~ # tmsh
admin@(BIGIP131)(cfg-sync In Sync)(Active)(/Common)(tmos)#

125

Using the ‘?’ for context aware help

admin@(BIGIP131)(cfg-sync In Sync)(Active)(/Common)(tmos)# create ltm ?
Modules:

auth Virtual server authentication configuration
cipher Cipher Rule and Group configuration
classification Traffic Classification
data-group Data group configuration
dns DNS configuration
html-rule Generalized HTML rule-based patcher
message-routing Message routing framework configuration
monitor LTM monitor templates
persistence Virtual server persistence configuration
profile Virtual server profile configuration
tacdb TACDB configuration.

Components:
eviction-policy Defines an eviction policy, used to select which flows to evict

→˓when approaching limits.
ifile iFile Configuration
nat Network address translation configuration
node Node specific pool member configuration
policy Centralized Policy Matching configuration
policy-strategy Centralized Policy Matching rule selection strategy
pool Load balancing pool configuration
rule iRules configuration
rule-profiler
snat Secure network address translation (SNAT) configuration
snat-translation SNAT translation address configuration
snatpool Collections of SNAT translation addresses
traffic-class Traffic Class Configuration
virtual Virtual server configuration
virtual-address Virtual server IP address configuration

Using ‘tab’ to offer possible completions

admin@(BIGIP131)(cfg-sync In Sync)(Active)(/Common)(tmos)# create ltm
Modules:

auth classification dns message-routing
→˓persistence tacdb
cipher data-group html-rule monitor profile

Components:
eviction-policy nat policy pool rule-

→˓profiler snat-translation traffic-class virtual-address
ifile node policy-strategy rule snat

→˓ snatpool virtual

By partially typing a keyword you can use ‘tab’ to either auto-complete or give you the list of options.

admin@(BIGIP131)(cfg-sync In Sync)(Active)(/Common)(tmos)# create ltm po
Components:

policy policy-strategy pool

To exit the tmsh shell just type ‘quit’:

admin@(BIGIP131)(cfg-sync In Sync)(Active)(/Common)(tmos)# quit
[admin@BIGIP131:Active:In Sync] ~ #

126

ZebOS router shell (imish)

From the BIG-IP bash cli you can enter the ZebOS router shell by typing the command ‘imish’. If you have
multiple route domains, you can specify which by adding the ‘-r #’

Route domain ‘0’ is default.

[admin@BIGIP131:Active:In Sync] ~ # imish -r 0

From there you can enter priveleged mode which will allow you do run administrative level commands and
also enter in to the configuration mode.

Note how the prompt changes from ‘>’ to ‘#’. This is how you can determine which mode you are in. If a
command fails, it may be because you do not have sufficient priveleges. There is no enable password on
the ZebOS instances for this lab.

[root@E_A_BIGIP-13:Active:Standalone] log # imish
E_A_BIGIP-13.local[0]>enable
E_A_BIGIP-13.local[0]#

From priveleged mode, you can type ‘configure terminal’ to enter configuration mode. You can shorten this
as shown below with the command ‘config t’ as you will see often in this lab.

E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.

Note: Cisco devices in this lab behave similar to the ZebOS cli with the exception of requiring a secondary
enable password to access priveleged mode.

5.2 Module 1 – Resilient Data Center Architectures

In this module you will learn how to configure BGP on the BIG-IP and understand how High Availability
configurations work with ZebOS and external network devices.

On the West Data Center you will configure a standard HA Active/Standby Pair of BIG-IP devices and
peer with your CPE devices connecting to the Internet. It is designed to help you understand how ZebOS
interacts with the BIG-IP and any BGP peers.

On the East Data Center you will configure two redundant BIG-IP devices using BGP as the failover mech-
anism itself. You will also configure and test controlling failover between the two data centers.

Lastly in Lab 3 you will go through some basic troubleshooting steps.

5.2.1 Lab 1: West Data Center Configuration

In this lab you will be configuring a BIG-IP HA cluster and setting it to advertise available virtual servers
through the BGP protocol.

Configure the BIG-IP HA Cluster in the West Data Center

From the jumphost ssh to the W_A_BIGIP-13

127

root@jumphost:~# ssh -l root 192.168.1.3

tmsh modify sys ntp servers add { pool.ntp.org }
tmsh mv cm device bigip1 W_A_BIGIP-13.local
tmsh modify cm device W_A_BIGIP-13.local configsync-ip 192.168.255.10
tmsh modify cm device W_A_BIGIP-13.local unicast-address { { ip 192.168.255.10 } }

From the jumphost ssh to the W_B_BIGIP-13

root@jumphost:~# ssh -l root 192.168.1.6

tmsh modify sys ntp servers add { pool.ntp.org }
tmsh mv cm device bigip1 W_B_BIGIP-13.local
tmsh modify cm device W_B_BIGIP-13.local configsync-ip 192.168.255.11
tmsh modify cm device W_B_BIGIP-13.local unicast-address { { ip 192.168.255.11 } }

Create the trust domain and sync-failover group from one of the two BIGIP’s:

From W_B_BIGIP-13

tmsh modify cm trust-domain /Common/Root ca-devices add { 192.168.255.10 } name W_A_
→˓BIGIP-13.local username admin password admin

tmsh create cm device-group sync-failover type sync-failover auto-sync enabled save-
→˓on-auto-sync true devices add { W_A_BIGIP-13.local W_B_BIGIP-13.local }

Run the initial configuration sync from one of the two BIGIP’s:

tmsh run cm config-sync to-group sync-failover

[root@W_B_BIGIP-13:Active:Changes Pending] config #
[root@W_B_BIGIP-13:Active:Awaiting Initial Sync] config #
[root@W_B_BIGIP-13:Active:Awaiting Initial Sync] config #
[root@W_B_BIGIP-13:Active:In Sync] config #
[root@W_B_BIGIP-13:Active:In Sync] config #

Save the configuration on both BIG-IP devices

tmsh save sys config partitions all

Create an application configuration for a virtual server and a pool member

Create the following virtual server and pool member

tmsh create ltm pool pool1 members add { 10.3.99.200:80 } monitor tcp_half_open

tmsh create ltm virtual vip1 destination 10.99.99.100:80 source-address-translation {
→˓type automap } pool pool1 profiles add { tcp http }

Note: The configuration should now be auto-sync’d to the other device and auto-saved.

Attention: The virtual server is not available.

128

[root@W_A_BIGIP-13:Standby:In Sync] config # tmsh show ltm virtual
--
Ltm::Virtual Server: vip1
--
Status

Availability : offline
State : enabled
Reason : The children pool member(s) are down
CMP : enabled
CMP Mode : all-cpus
Destination : 10.99.99.100:80

The pool members are unavailable.

[root@W_A_BIGIP-13:Standby:In Sync] config # tmsh show ltm pool

Ltm::Pool: pool1

Status

Availability : offline
State : enabled
Reason : The children pool member(s) are down
Monitor : tcp_half_open
Minimum Active Members : 0
Current Active Members : 0

Available Members : 0
Total Members : 1

Total Requests : 0
Current Sessions : 0

You need to create a static route to the web server located in the core network on both BIG-IPs.

tmsh create net route webservers network 10.3.99.0/24 gw 10.1.20.254

Note: This only needs to be configured on one device as seen below

[root@W_B_BIGIP-13:Active:In Sync] config # tmsh create net route webservers network
→˓10.3.99.0/24 gw 10.1.20.254
[root@W_B_BIGIP-13:Active:Not All Devices Synced] config #
[root@W_B_BIGIP-13:Active:In Sync] config #

Your virtual server should now show available.

tmsh show ltm virtual

--
Ltm::Virtual Server: vip1
--
Status

Availability : available
State : enabled
Reason : The virtual server is available
CMP : enabled
CMP Mode : all-cpus
Destination : 10.99.99.100:80

129

Note: From the jump host you can now try to reach the website

Either open a web browser and browse to http://10.99.99.100 or from the jump host CLI, type:

curl http://10.99.99.100

Why is it not available?

Configure the route advertisement on the BIG-IP cluster

On both W_A_BIGIP and W_B_BIGIP configure the following:

tmsh modify net route-domain 0 routing-protocol add { BGP }

Note: The following just needs to be applied on just one device

tmsh modify ltm virtual-address 10.99.99.100 route-advertisement all

Note:

route-advertisement Specifies the route advertisement setting for the virtual address. The default value
is disabled.

enabled or selective Route is advertised when virtual-address is available.

disabled Route is not advertised.

always Route is advertised regardless of the availability status.

any Route is advertised when any of the contributing virtual server is available.

all Route is advertised when all of the contributing virtual server is available.

Because the previous commands are also base configuration you should save the configuration on both
devices.

tmsh save sys config

Now you can begin to configure the routing protocol in ZebOS. To reach the ZebOS CLI, from the BIG-IP
BASH shell.

[root@W_B_BIGIP-13:Active:In Sync] config # imish
[root@W_B_BIGIP-13:Active:In Sync] config # enable
W_B_BIGIP-13.local[0]#show ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default
C 10.1.10.0/24 is directly connected, external
C 10.1.20.0/24 is directly connected, internal
K 10.3.99.0/24 [0/0] via 10.1.20.254, internal

130

http://10.99.99.100

K 10.99.99.100/32 [0/0] is directly connected, tmm
C 127.0.0.1/32 is directly connected, lo
C 127.1.1.254/32 is directly connected, tmm
C 192.168.255.0/24 is directly connected, ha

Gateway of last resort is not set

[root@W_A_BIGIP-13:Active:In Sync] config # imish
[root@W_A_BIGIP-13:Active:In Sync] config # enable
W_A_BIGIP-13.local[0]>sh ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default
C 10.1.10.0/24 is directly connected, external
C 10.1.20.0/24 is directly connected, internal
K 10.3.99.0/24 [0/0] via 10.1.20.254, internal
C 127.0.0.1/32 is directly connected, lo
C 127.1.1.254/32 is directly connected, tmm
C 192.168.255.0/24 is directly connected, ha

Gateway of last resort is not set

Note: The two kernel routes designated with a ‘K’. These are routes provided to ZebOS from tmm. The
first route you may recall is 10.3.99.0/24. This is the static route you configured via tmsh. The second route,
10.99.99.100/32 is the virtual server.

Note: Why does the kernel route for 10.99.99.0/32 only show up in one of the devices?

Force a failover event to occur on the ‘Active’ device and validate.

W_B_BIGIP-13.local[0]#quit

tmsh run sys failover standby

Note: This needs to be run from whichever device in your HA Pair is currently active. Once you ‘quit’ imish,
it can be determined from the bash shell prompt.

[root@W_A_BIGIP-13:Active:In Sync] [root@W_B_BIGIP-13:Active:In Sync]

[root@W_A_BIGIP-13:Active:In Sync] config # imish
[root@W_B_BIGIP-13:Active:In Sync] config # enable
W_B_BIGIP-13.local[0]#sh ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default

131

mailto:root@W_A_BIGIP-13

C 10.1.10.0/24 is directly connected, external
C 10.1.20.0/24 is directly connected, internal
K 10.3.99.0/24 [0/0] via 10.1.20.254, internal
C 127.0.0.1/32 is directly connected, lo
C 127.1.1.254/32 is directly connected, tmm
C 192.168.255.0/24 is directly connected, ha

Gateway of last resort is not set

[root@W_A_BIGIP-13:Active:In Sync] config # imish
[root@W_B_BIGIP-13:Active:In Sync] config # enable
W_A_BIGIP-13.local[0]#show ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default

C 10.1.10.0/24 is directly connected, external
C 10.1.20.0/24 is directly connected, internal
K 10.3.99.0/24 [0/0] via 10.1.20.254, internal
K 10.99.99.100/32 [0/0] is directly connected, tmm
C 127.0.0.1/32 is directly connected, lo
C 127.1.1.254/32 is directly connected, tmm
C 192.168.255.0/24 is directly connected, ha

Gateway of last resort is not set

Configure the iBGP session with the West CPE devices W_CPE_A_CSR1k and W_CPE_A_CSR1k. The
CPE configuration is already done for you so you only need to configure the two BIG-IP devices.

[root@W_A_BIGIP-13:Active:In Sync] config # imish
W_A_BIGIP-13.local[0]>enable
W_A_BIGIP-13.local[0]#config t
W_A_BIGIP-13.local[0](config)#router bgp 65101
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.3 remote-as 65101
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.3 description W_CPE_A
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.4 remote-as 65101
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.4 description W_CPE_B
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.6 remote-as 65101
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.6 description W_B_BIGIP-13
W_A_BIGIP-13.local[0](config-router)# redistribute kernel
W_A_BIGIP-13.local[0](config)#end
W_A_BIGIP-13.local[0]#wr
Building configuration...
[OK]
W_A_BIGIP-13.local[0]#

[root@W_B_BIGIP-13:Active:In Sync] config # imish
W_B_BIGIP-13.local[0]>enable
W_B_BIGIP-13.local[0]#config t
W_B_BIGIP-13.local[0](config)#router bgp 65101
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.3 remote-as 65101
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.3 description W_CPE_A
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.4 remote-as 65101
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.4 description W_CPE_B

132

W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.5 remote-as 65101
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.5 description W_A_BIGIP-13
W_B_BIGIP-13.local[0](config-router)#redistribute kernel
W_B_BIGIP-13.local[0](config-router)#end
W_B_BIGIP-13.local[0]#wr
Building configuration...
[OK]
W_B_BIGIP-13.local[0]#

Note: BGP has not come up between the BIG-IP’s. Why is that?

W_A_BIGIP-13.local[0]#sh ip bgp summary
BGP router identifier 192.168.255.10, local AS number 65101
BGP table version is 3
4 BGP AS-PATH entries
0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.1.10.3 4 65101 41 32 3 0 0 00:00:26 6
10.1.10.4 4 65101 40 30 3 0 0 00:00:26 6
10.1.10.6 4 65101 7 7 0 0 0 00:01:04 Active

Configure port lockdown on BIG-IP’s to allow BGP via external interface on both BIG-IP:

tmsh list net self external allow-service
net self external {

allow-service none
}

tmsh modify net self external allow-service add { tcp:179 }

tmsh list net self external allow-service
net self external {

allow-service {
tcp:bgp

}
}

Validate BGP is now established between both BIGIP’s

W_B_BIGIP-13.local[0]#sh ip bgp summary
BGP router identifier 192.168.255.11, local AS number 65101
BGP table version is 5
4 BGP AS-PATH entries
0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.1.10.3 4 65101 32 23 5 0 0 00:03:16 6
10.1.10.4 4 65101 32 23 5 0 0 00:03:16 6
10.1.10.5 4 65101 12 11 5 0 0 00:00:07 2

Total number of neighbors 3

Note: iBGP requires that you configure a full mesh. But in this simplified scenario you do not need to

133

configure a full mesh for iBGP because there are only four routers and you’ve got the BIG-IP HA Cluster
and your outbound gateway. Your topology may vary and you may want to configure a full mesh if there are
other devices. Additionally in a larger topology you may want to configure eBGP between the CPE and the
BIG-IP clusters. This is explored in more depth when you configure the East data center.

Note: The redistribute kernel command is the secret sauce that allows tmm routes from the BIG-IP to be
advertised to BGP peers.

Validate that the website is accessible from the jumphost

root@jumphost:~# curl 10.99.99.100
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

Validate your configuration on both of the CPE routers

You can telnet to either of the CPE devices

csr1000v-W_CPE_A#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 2 subnets
C 1.1.1.1 is directly connected, Loopback100
O 1.1.1.2 [110/2] via 10.1.10.4, 02:49:46, GigabitEthernet4

3.0.0.0/32 is subnetted, 1 subnets
B 3.3.3.3 [20/0] via 172.16.1.3, 00:05:44

10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
C 10.1.10.0/24 is directly connected, GigabitEthernet4
L 10.1.10.3/32 is directly connected, GigabitEthernet4
B 10.99.99.100/32 [200/0] via 10.1.10.5, 00:00:07

172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
C 172.16.1.0/24 is directly connected, GigabitEthernet2
L 172.16.1.4/32 is directly connected, GigabitEthernet2
B 172.16.2.0/24 [20/0] via 172.16.1.3, 00:35:33
C 172.16.3.0/24 is directly connected, GigabitEthernet3
L 172.16.3.4/32 is directly connected, GigabitEthernet3
B 172.16.6.0/24 [20/0] via 172.16.1.3, 00:49:06

Note: The BGP route should be pointing to the ‘Active’ device in the HA cluster.

Initiate a failover event to determine how the route update happens.

From whichever BIG-IP device is active:

134

tmsh run sys failover standby

csr1000v-W_CPE_A#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 2 subnets
C 1.1.1.1 is directly connected, Loopback100
O 1.1.1.2 [110/2] via 10.1.10.4, 02:51:26, GigabitEthernet4

3.0.0.0/32 is subnetted, 1 subnets
B 3.3.3.3 [20/0] via 172.16.1.3, 00:07:24

10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
C 10.1.10.0/24 is directly connected, GigabitEthernet4
L 10.1.10.3/32 is directly connected, GigabitEthernet4
B 10.99.99.100/32 [200/0] via 10.1.10.6, 00:00:02

172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
C 172.16.1.0/24 is directly connected, GigabitEthernet2
L 172.16.1.4/32 is directly connected, GigabitEthernet2
B 172.16.2.0/24 [20/0] via 172.16.1.3, 00:37:13
C 172.16.3.0/24 is directly connected, GigabitEthernet3
L 172.16.3.4/32 is directly connected, GigabitEthernet3
B 172.16.6.0/24 [20/0] via 172.16.1.3, 00:50:46

Note: If you were watching the update time you’ll notice it takes a bit for the next-hop address to change.
This can be modified with timers, or you can use a floating self-ip between an HA pair of BIG-IP’s to minimize
the update time because the Next-hop entry for the floating address never needs to be updated.

Validate that the website is accessible from the jumphost

root@jumphost:~# curl 10.99.99.100
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

Next we will configure a floating self-ip address to minimize the need for the next-hop to change. On one of
the West Data Center BIG-IP devices. Combined with mac-masquerading and connection mirroring this is
the least disruptive failover configuration.

tmsh create net self float-bgp address 10.1.10.7/24 vlan external traffic-group
→˓traffic-group-1

You can either wait until the route update occurs or you can reset the BGP neighbors with the clear ip bgp
* command

135

[root@W_B_BIGIP-13:Active:In Sync] config # imish
W_B_BIGIP-13.local[0]>enable
W_B_BIGIP-13.local[0]#clear ip bgp *

csr1000v-W_CPE_A#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 2 subnets
C 1.1.1.1 is directly connected, Loopback100
O 1.1.1.2 [110/2] via 10.1.10.4, 00:31:23, GigabitEthernet4

2.0.0.0/32 is subnetted, 1 subnets
B 2.2.2.2 [20/0] via 172.16.1.3, 00:30:43

10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
C 10.1.10.0/24 is directly connected, GigabitEthernet4
L 10.1.10.3/32 is directly connected, GigabitEthernet4
B 10.99.99.100/32 [200/0] via 10.1.10.7, 00:03:06

172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
C 172.16.1.0/24 is directly connected, GigabitEthernet2
L 172.16.1.4/32 is directly connected, GigabitEthernet2
B 172.16.2.0/24 [20/0] via 172.16.1.3, 00:30:44
C 172.16.3.0/24 is directly connected, GigabitEthernet3
L 172.16.3.4/32 is directly connected, GigabitEthernet3
B 172.16.6.0/24 [20/0] via 172.16.1.3, 00:30:44

On the CPE devices look at the result of the show ip bgp command

csr1000v-W_CPE_A#sh ip bgp
BGP table version is 10, local router ID is 1.1.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,

r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
x best-external, a additional-path, c RIB-compressed,
t secondary path,

Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found

Network Next Hop Metric LocPrf Weight Path

*> 1.1.1.1/32 0.0.0.0 0 32768 i
r>i 1.1.1.2/32 1.1.1.2 0 100 0 i

* i 2.2.2.2/32 172.16.2.3 0 100 0 65001 65002 65201 i

*> 172.16.1.3 0 65001 65002 65201 i

* i 10.3.99.0/24 10.1.20.254 100 0 ?

*>i 10.99.99.100/32 10.1.10.7 100 0 ?
r i 172.16.1.0/24 172.16.2.3 0 100 0 65001 ?
r> 172.16.1.3 0 0 65001 ?

* i 172.16.2.0/24 172.16.2.3 0 100 0 65001 ?

*> 172.16.1.3 0 0 65001 ?

* i 172.16.6.0/24 172.16.2.3 0 100 0 65001 65002 ?

*> 172.16.1.3 0 65001 65002 ?

136

csr1000v-W_CPE_A#

Note: Compare the show ip route output in the previous step to the show ip bgp output. What looks out of
place here? Why is it there? Why does it not show up in the routing table?

Create an aggregate route since many service providers will not accept anything less than a /24

On both of the West BIG-IPs configure ZebOS to only advertise an aggregate route for the virtual server
network and filter out the core network advertisement.

[root@W_A_BIGIP-13:Active:In Sync] config # imish
W_A_BIGIP-13.local[0]>enable
W_A_BIGIP-13.local[0]#config t
W_A_BIGIP-13.local[0](config)#ip prefix-list PFX_ALLOW_VIPS seq 5 permit 10.99.99.0/24
W_A_BIGIP-13.local[0](config)#route-map RESTRICT_ADVERTISE permit 10
W_A_BIGIP-13.local[0](config-route-map)# match ip address prefix-list PFX_ALLOW_VIPS
W_A_BIGIP-13.local[0](config)#router bgp 65101
W_A_BIGIP-13.local[0](config-router)# aggregate-address 10.99.99.0/24
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.3 route-map RESTRICT_ADVERTISE
→˓out
W_A_BIGIP-13.local[0](config-router)# neighbor 10.1.10.4 route-map RESTRICT_ADVERTISE
→˓out
W_A_BIGIP-13.local[0](config-router)#end
W_A_BIGIP-13.local[0]#wr
Building configuration...
[OK]
W_A_BIGIP-13.local[0]#

[root@W_A_BIGIP-13:Active:In Sync] config # imish
W_A_BIGIP-13.local[0]>enable
W_B_BIGIP-13.local[0]# config t
W_B_BIGIP-13.local[0](config)#ip prefix-list PFX_ALLOW_VIPS seq 5 permit 10.99.99.0/24
W_B_BIGIP-13.local[0](config)#route-map RESTRICT_ADVERTISE permit 10
W_B_BIGIP-13.local[0](config-route-map)# match ip address prefix-list PFX_ALLOW_VIPS
W_B_BIGIP-13.local[0](config)#router bgp 65101
W_B_BIGIP-13.local[0](config-router)# aggregate-address 10.99.99.0/24
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.3 route-map RESTRICT_ADVERTISE
→˓out
W_B_BIGIP-13.local[0](config-router)# neighbor 10.1.10.4 route-map RESTRICT_ADVERTISE
→˓out
W_B_BIGIP-13.local[0](config-router)#end
W_B_BIGIP-13.local[0]#wr
Building configuration...
[OK]
W_B_BIGIP-13.local[0]#

Validate on either of the CPE routers. You can either wait until the route update occurs or you can reset the
BGP neighbors with the clear ip bgp * command

Clear ip bgp * on the active BIG-IP such that /32 is no longer advertised.

[root@W_B_BIGIP-13:Active:In Sync] config # imish
W_B_BIGIP-13.local[0]>enable
W_B_BIGIP-13.local[0]#clear ip bgp *

137

csr1000v-W_CPE_A#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 2 subnets
C 1.1.1.1 is directly connected, Loopback100
O 1.1.1.2 [110/2] via 10.1.10.4, 03:04:37, GigabitEthernet4

2.0.0.0/32 is subnetted, 1 subnets
B 2.2.2.2 [20/0] via 172.16.1.3, 00:06:50

10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
C 10.1.10.0/24 is directly connected, GigabitEthernet4
L 10.1.10.3/32 is directly connected, GigabitEthernet4
B 10.99.99.0/24 [200/0] via 10.1.10.7, 00:06:50

172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
C 172.16.1.0/24 is directly connected, GigabitEthernet2
L 172.16.1.4/32 is directly connected, GigabitEthernet2
B 172.16.2.0/24 [20/0] via 172.16.1.3, 00:06:50
C 172.16.3.0/24 is directly connected, GigabitEthernet3
L 172.16.3.4/32 is directly connected, GigabitEthernet3
B 172.16.6.0/24 [20/0] via 172.16.1.3, 00:06:50

Validate that the website is accessible from the jumphost.

root@jumphost:~# curl 10.99.99.100
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

Add another virtual server and test the behavior of failover of the aggregate route.

Add another virtual server within the VIP subnet.

tmsh create ltm pool pool2 members add { 10.3.99.200:8081 } monitor tcp_half_open
tmsh create ltm virtual vip2 destination 10.99.99.101:80 source-address-translation {
→˓type automap } pool pool2 profiles add { tcp http }

Validate that the website is accessible from the jumphost

root@jumphost:~# curl 10.99.99.101
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

Disable the first pool you created.

138

tmsh modify ltm pool pool1 members modify { 10.3.99.200:http { state user-down } }

tmsh show ltm virtual vip1
--
Ltm::Virtual Server: vip1
--
Status

Availability : offline
State : enabled
Reason : The children pool member(s) are down
CMP : enabled
CMP Mode : all-cpus
Destination : 10.99.99.100:80

Validate that the website is still accessible from the jumphost

root@jumphost:~# curl 10.99.99.101
curl: (7) Failed to connect to 10.99.99.101 port 80: No route to host

Now look at the routing table on the CPE virtual server.

csr1000v-W_CPE_A#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 2 subnets
C 1.1.1.1 is directly connected, Loopback100
O 1.1.1.2 [110/2] via 10.1.10.4, 00:57:32, GigabitEthernet4

2.0.0.0/32 is subnetted, 1 subnets
B 2.2.2.2 [20/0] via 172.16.1.3, 00:15:52

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C 10.1.10.0/24 is directly connected, GigabitEthernet4
L 10.1.10.3/32 is directly connected, GigabitEthernet4

172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
C 172.16.1.0/24 is directly connected, GigabitEthernet2
L 172.16.1.4/32 is directly connected, GigabitEthernet2
B 172.16.2.0/24 [20/0] via 172.16.1.3, 00:56:56
C 172.16.3.0/24 is directly connected, GigabitEthernet3
L 172.16.3.4/32 is directly connected, GigabitEthernet3
B 172.16.6.0/24 [20/0] via 172.16.1.3, 00:56:56

On the active BIG-IP look at the routing table.

W_B_BIGIP-13.local[0]#sh ip route

Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2

139

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default

B 1.1.1.1/32 [200/0] via 10.1.10.3, external, 00:57:35
B 1.1.1.2/32 [200/0] via 10.1.10.4, external, 00:57:35
C 10.1.10.0/24 is directly connected, external
C 10.1.20.0/24 is directly connected, internal
K 10.3.99.0/24 [0/0] via 10.1.20.254, internal
C 127.0.0.1/32 is directly connected, lo
C 127.1.1.254/32 is directly connected, tmm
C 192.168.255.0/24 is directly connected, ha

Note: There are no kernel routes from tmm. e.g. 10.99.99.0/24, 10.99.99.100, or 10.99.99.101.

Why?

Note: You need to make sure either all virtual-addresses have advertisement-enabled or a healthy majority
of them enabled or the aggregate route will be withdrawn. BGP by default needs to have a route from
another routing protocol available in order to advertise a route to a BGP neighbor. In this case because
only one of the virtual-addresses has it enabled and it goes down, all other addresses within the /24 are
considered unreachable and so the route is withdrawn.

Re-enable the pool and then review the BIG-IP and CPE route tables.

tmsh modify ltm pool pool1 members modify { 10.3.99.200:http { state user-up } }

W_B_BIGIP-13.local[0]#sh ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default

B 1.1.1.1/32 [200/0] via 10.1.10.3, external, 00:58:09
B 1.1.1.2/32 [200/0] via 10.1.10.4, external, 00:58:09
C 10.1.10.0/24 is directly connected, external
C 10.1.20.0/24 is directly connected, internal
K 10.3.99.0/24 [0/0] via 10.1.20.254, internal
B 10.99.99.0/24 [200/0] is a summary, Null, 00:00:04
K 10.99.99.100/32 [0/0] is directly connected, tmm
C 127.0.0.1/32 is directly connected, lo
C 127.1.1.254/32 is directly connected, tmm
C 192.168.255.0/24 is directly connected, ha

Gateway of last resort is not set

csr1000v-W_CPE_A#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route

140

o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 2 subnets
C 1.1.1.1 is directly connected, Loopback100
O 1.1.1.2 [110/2] via 10.1.10.4, 01:10:54, GigabitEthernet4

2.0.0.0/32 is subnetted, 1 subnets
B 2.2.2.2 [20/0] via 172.16.1.3, 00:29:14

10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
C 10.1.10.0/24 is directly connected, GigabitEthernet4
L 10.1.10.3/32 is directly connected, GigabitEthernet4
B 10.99.99.0/24 [200/0] via 10.1.10.7, 00:09:42

172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
C 172.16.1.0/24 is directly connected, GigabitEthernet2
L 172.16.1.4/32 is directly connected, GigabitEthernet2
B 172.16.2.0/24 [20/0] via 172.16.1.3, 01:10:18
C 172.16.3.0/24 is directly connected, GigabitEthernet3
L 172.16.3.4/32 is directly connected, GigabitEthernet3
B 172.16.6.0/24 [20/0] via 172.16.1.3, 01:10:18

Validate that the websites are accessible from the jumphost

root@jumphost:~# curl 10.99.99.100
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

root@jumphost:~# curl 10.99.99.101
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

Modify the virtual-address for the second virtual server to allow route-advertisement and repeat disabling.

tmsh modify ltm virtual-address 10.99.99.101 route-advertisement selective
tmsh modify ltm pool pool1 members modify { 10.3.99.200:http { state user-down } }

csr1000v-W_CPE_A#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 2 subnets
C 1.1.1.1 is directly connected, Loopback100

141

O 1.1.1.2 [110/2] via 10.1.10.4, 01:21:27, GigabitEthernet4
2.0.0.0/32 is subnetted, 1 subnets

B 2.2.2.2 [20/0] via 172.16.1.3, 00:39:47
10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks

C 10.1.10.0/24 is directly connected, GigabitEthernet4
L 10.1.10.3/32 is directly connected, GigabitEthernet4
B 10.99.99.0/24 [200/0] via 10.1.10.7, 00:20:15

172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
C 172.16.1.0/24 is directly connected, GigabitEthernet2
L 172.16.1.4/32 is directly connected, GigabitEthernet2
B 172.16.2.0/24 [20/0] via 172.16.1.3, 01:20:51
C 172.16.3.0/24 is directly connected, GigabitEthernet3
L 172.16.3.4/32 is directly connected, GigabitEthernet3
B 172.16.6.0/24 [20/0] via 172.16.1.3, 01:20:51

The route now remained when one of the virtual servers went down.

Validate that .101 website remained up while the .100 is not.

root@jumphost:~# curl 10.99.99.100
curl: (56) Recv failure: Connection reset by peer

root@jumphost:~# curl 10.99.99.101
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

You can re-enable the .100 website before moving on to Module 2.

tmsh modify ltm pool pool1 members modify { 10.3.99.200:http { state user-up } }

Validate that the websites are accessible from the jumphost

root@jumphost:~# curl 10.99.99.101
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

root@jumphost:~# curl 10.99.99.100
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

Sample configuration

Sample complete configuration from one BIG-IP:
!
W_B_BIGIP-13.local[0]#sh run
!
no service password-encryption
!
router bgp 65101

aggregate-address 10.99.99.0/24

142

redistribute kernel
neighbor 10.1.10.3 remote-as 65101
neighbor 10.1.10.3 route-map RESTRICT_ADVERTISE out
neighbor 10.1.10.4 remote-as 65101
neighbor 10.1.10.4 route-map RESTRICT_ADVERTISE out
neighbor 10.1.10.5 remote-as 65101

!
ip prefix-list PFX_ALLOW_VIPS seq 5 permit 10.99.99.0/24
!
route-map RESTRICT_ADVERTISE permit 10

match ip address prefix-list PFX_ALLOW_VIPS
!
line con 0

login
line vty 0 39

login
!
end

Note: This completes Lab 1

5.2.2 Lab 2: East Data Center Configuration

In this lab you will be configuring two BIG-IP standalone devices and setting it up to advertise available
virtual servers through the BGP protocol.

Configure the BIG-IP East Data Center

From the jumphost ssh to the E_A_BIGIP-13

root@jumphost:~# ssh -l root 192.168.1.8

tmsh modify sys ntp servers add { pool.ntp.org }

From the jumphost ssh to the E_B_BIGIP-13

root@jumphost:~# ssh -l root 192.168.1.4

tmsh modify sys ntp servers add { pool.ntp.org }

Save the configuration on both devices

tmsh save sys config partitions all

Configure the eBGP session between E_A_BIGIP-13 and the East Core via csr1000v-CORE.

Note: The CORE Router configuration is already done for you so you only need to configure the two EAST
BIG-IP devices.

143

E_A_BIGIP-13: On E_A_BIGIP configure the following to enable BGP for route-domain 0.

tmsh modify net route-domain 0 routing-protocol add { BGP }

tmsh save sys config partitions all

E_A_BIGIP-13: Bring up BGP with the East Core and configure the keepalive interval to 3 seconds and hold
time to 9 seconds via neighbor statement instead of using the default values of 30 seconds for keepalive
and 180 seconds for hold time:

[root@E_A_BIGIP-13:Active:In Sync] config # imish -r 0
E_A_BIGIP-13.local[0]>enable
E_A_BIGIP-13.local[0]#config t
E_A_BIGIP-13.local[0](config)#router bgp 65202
E_A_BIGIP-13.local[0](config-router)# neighbor 10.2.40.4 remote-as 65205
E_A_BIGIP-13.local[0](config-router)# neighbor 10.2.40.4 description E_CORE
E_A_BIGIP-13.local[0](config-router)# neighbor 10.2.40.4 timers 3 9
E_A_BIGIP-13.local[0](config-router)# end
E_A_BIGIP-13.local[0]#write mem

E_A_BIGIP-13: Verify eBGP adjacencies are up between E_A_BIGIP-13 and the East Core router -
csr1000v-CORE.

E_A_BIGIP-13.local[0]#sh ip bgp sum
BGP router identifier 10.2.40.3, local AS number 65202
BGP table version is 2
1 BGP AS-PATH entries
0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.2.40.4 4 65205 5 2 2 0 0 00:00:22 2

E_A_BIGIP-13: Verify route for the webservice via 10.3.99.0/24 is installed in routing table after eBGP is
established between E_A_BIGIP-13 and the East Core router - csr1000v-CORE.

E_A_BIGIP-13.local[0]#sh ip route | i 10.2.40.4
B 3.3.3.3/32 [20/0] via 10.2.40.4, internal, 00:01:54
B 10.3.99.0/24 [20/0] via 10.2.40.4, internal, 00:01:54
E_A_BIGIP-13.local[0]

Configure the eBGP session between E_B_BIGIP-13 and the East Core via csr1000v-CORE.

Note: The CORE Router configuration is already done for you so you only need to configure the two EAST
BIG-IP devices.

E_B_BIGIP-13: On E_B_BIGIP configure the following to enable BGP for route-domain 0.

tmsh modify net route-domain 0 routing-protocol add { BGP }

tmsh save sys config partitions all

E_B_BIGIP-13: Bring up BGP with the East Core and configure the keepalive interval to 3 seconds and hold
time to 9 seconds via neighbor statement instead of using the default values of 30 seconds for keepalive
and 180 seconds for hold time:

144

[root@E_B_BIGIP-13:Active:In Sync] config # imish -r 0
E_B_BIGIP-13.local[0]>enable
E_B_BIGIP-13.local[0]#config t
E_B_BIGIP-13.local[0](config)#router bgp 65203
E_B_BIGIP-13.local[0](config-router)# neighbor 10.2.50.4 remote-as 65205
E_B_BIGIP-13.local[0](config-router)# neighbor 10.2.50.4 description E_CORE
E_B_BIGIP-13.local[0](config-router)# neighbor 10.2.50.4 timers 3 9
E_A_BIGIP-13.local[0](config-router)# end
E_A_BIGIP-13.local[0]#write mem

E_B_BIGIP-13: Verify eBGP adjacencies are up between E_B_BIGIP-13 and the East Core router -
csr1000v-CORE.

E_B_BIGIP-13.local[0]#sh ip bgp sum
BGP router identifier 10.2.50.3, local AS number 65203
BGP table version is 2
1 BGP AS-PATH entries
0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.2.50.4 4 65205 4 2 1 0 0 00:00:16 2

Total number of neighbors 1
E_B_BIGIP-13.local[0]#

E_B_BIGIP-13: Verify route for the webservice via 10.3.99.0/24 is installed in routing table after eBGP is
established between E_B_BIGIP-13 and the East Core router - csr1000v-CORE.

E_B_BIGIP-13.local[0]#sh ip route | i 10.2.50.4
B 3.3.3.3/32 [20/0] via 10.2.50.4, internal, 00:06:52
B 10.3.99.0/24 [20/0] via 10.2.50.4, internal, 00:06:52
E_B_BIGIP-13.local[0]#

Validate Webserver Connectivity via Core Network:

Verify that you can reach the webserver on the core network with icmp ping and curl from both BIG-IPs.

E_A_BIGIP-13: Ping the webserver @ 10.3.99.200 via the core network from E_A_BIGIP-13. Note the ping
may not work immediately and could take a few seconds. Also Note the escape sequence for icmp ping on
the BIGIP is “CTRL + C”

[root@E_A_BIGIP-13:Active:Standalone] config # ping 10.3.99.200
PING 10.3.99.200 (10.3.99.200) 56(84) bytes of data.
64 bytes from 10.3.99.200: icmp_seq=1 ttl=63 time=8.51 ms
64 bytes from 10.3.99.200: icmp_seq=2 ttl=63 time=8.12 ms
^C
--- 10.3.99.200 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1823ms
rtt min/avg/max/mdev = 8.121/8.318/8.516/0.217 ms

E_A_BIGIP-13: Curl the webserver @ 10.3.99.200 via the core network from E_A_BIGIP-13.

[root@E_A_BIGIP-13:Active:Standalone] config # curl 10.3.99.200
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

145

E_B_BIGIP-13: Ping the webserver @ 10.3.99.200 via the core network from E_B_BIGIP-13. Note the ping
may not work immediately and could take a few seconds. Also Note the escape sequence for icmp ping on
the BIGIP is “CTRL + C”

[root@E_B_BIGIP-13:Active:Standalone] config # ping 10.3.99.200
PING 10.3.99.200 (10.3.99.200) 56(84) bytes of data.
64 bytes from 10.3.99.200: icmp_seq=1 ttl=63 time=6.06 ms
64 bytes from 10.3.99.200: icmp_seq=2 ttl=63 time=9.31 ms
^C
--- 10.3.99.200 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1726ms
rtt min/avg/max/mdev = 6.068/7.692/9.317/1.626 ms

E_B_BIGIP-13: Curl the webserver @ 10.3.99.200 via the core network from E_B_BIGIP-13.

[root@E_B_BIGIP-13:Active:Standalone] config # curl 10.3.99.200
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>
[root@E_B_BIGIP-13:Active:Standalone] config #

Create an application configuration for a virtual server and a pool member on E_A_BIGIP-13:

E_A_BIGIP-13: Create the following virtual server and pool member on E_A_BIGIP-13:

tmsh create ltm pool pool1 members add { 10.3.99.200:80 } monitor tcp_half_open
tmsh create ltm virtual vip1 destination 10.99.99.102:80 source-address-translation {
→˓type automap } pool pool1 profiles add { tcp http }

tmsh save sys config partitions all

E_A_BIGIP-13: Your virtual server should now show available on E_A_BIGIP-13:

[root@E_A_BIGIP-13:Active:Standalone] config # tmsh show ltm virtual

--
Ltm::Virtual Server: vip1
--
Status

Availability : available
State : enabled
Reason : The virtual server is available
CMP : enabled
CMP Mode : all-cpus
Destination : 10.99.99.102:80

Configure the route advertisement on the E_A_BIGIP-13:

E_A_BIGIP-13: Configure the eBGP session on E_A_BIGIP to East CPE_A. The CPE configuration is
already done for you so you only need to configure the BIGIP side of session.

146

[root@E_A_BIGIP-13:Active:In Sync] config # imish -r 0
E_A_BIGIP-13.local[0]>enable
E_A_BIGIP-13.local[0]#config t
E_A_BIGIP-13.local[0](config)#router bgp 65202
E_A_BIGIP-13.local[0](config-router)# neighbor 10.2.20.4 remote-as 65201
E_A_BIGIP-13.local[0](config-router)# neighbor 10.2.20.4 description E_CPE_A
E_A_BIGIP-13.local[0](config-router)# neighbor 10.2.20.4 timers 3 9
E_A_BIGIP-13.local[0](config-router)# end
E_A_BIGIP-13.local[0]#write mem

E_A_BIGIP-13: Verify eBGP adjacencies are up between E_A_BIGIP_13 and the East CPE_A.

E_A_BIGIP-13.local[0]#sh ip bgp sum
BGP router identifier 10.2.40.3, local AS number 65202
BGP table version is 3
5 BGP AS-PATH entries
0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.2.20.4 4 65201 27 21 3 0 0 00:00:53 8
10.2.40.4 4 65205 157 141 3 0 0 01:07:25 2

E_A_BIGIP-13: On E_A_BIGIP configure the following network statement for 10.99.99.0/24 such that prefix
is originated locally:

[root@E_A_BIGIP-13:Active:Standalone] config # imish -r 0
E_A_BIGIP-13.local[0]>en
E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_A_BIGIP-13.local[0](config)#router bgp 65202
E_A_BIGIP-13.local[0](config-router)#network 10.99.99.0/24
E_A_BIGIP-13.local[0](config-router)#end
E_A_BIGIP-13.local[0]#

E_A_BIGIP-13: On E_A_BIGIP verify 10.99.99.0/24 is being locally originated which can be seen with
“Local”:

E_A_BIGIP-13.local[0]#sh ip bgp 10.99.99.0/24 | b Local

...skipping
Local
0.0.0.0 from 0.0.0.0 (10.2.40.3)

Origin IGP, localpref 100, weight 32768, valid, sourced, local, best
Last update: Mon Jul 16 18:07:54 2018

E_A_BIGIP-13: On E_A_BIGIP verify 10.99.99.0/24 is being advertised outbound to East CPE device via
E_CPE_A_CSR1k:

E_A_BIGIP-13.local[0]#sh ip bgp neighbor 10.2.20.4 advertised-routes | i 10.99.99.0/24

*> 10.99.99.0/24 10.2.20.3 100 32768 i

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is learning the 10.99.99.0/24 inbound from E_A_BIGIP:

Note: You can telnet to the CPE devices using the BGP neighbor IP address from Zebos using root/default
for user/pass:

147

Example telnet from E_A_BIGIP-13 to East CPE Device @ 10.2.20.4:

E_A_BIGIP-13.local[0]#telnet 10.2.20.4
Trying 10.2.20.4...
Connected to 10.2.20.4.
Escape character is '^]'.

User Access Verification

Username: root
Password:
csr1000v-E_CPE_A>

E_CPE_A_CSR1k: Continued. . . Verify that E_CPE_A_CSR1k is learning the 10.99.99.0/24 inbound from
E_A_BIGIP:

csr1000v-E_CPE_A>show ip bgp vpnv4 vrf internet neighbors 10.2.20.3 routes
BGP table version is 26, local router ID is 2.2.2.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,

r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
x best-external, a additional-path, c RIB-compressed,
t secondary path,

Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found

Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 65201:1000 (default for vrf internet)

*> 3.3.3.3/32 10.2.20.3 4294967295 0 65202 65205 i

*> 10.99.99.0/24 10.2.20.3 4294967295 0 65202 i

Total number of prefixes 2
csr1000v-E_CPE_A>

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is installing 10.99.99.0/24 from E_A_BIGIP:

csr1000v-E_CPE_A>show ip route vrf internet

Routing Table: internet
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 2 subnets
B 1.1.1.1 [20/4294967294] via 172.16.6.3, 22:12:30
B 1.1.1.2 [20/4294967294] via 172.16.6.3, 22:12:32

3.0.0.0/32 is subnetted, 1 subnets
B 3.3.3.3 [20/4294967294] via 10.2.20.3, 01:27:19

10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
C 10.2.20.0/24 is directly connected, GigabitEthernet2
L 10.2.20.4/32 is directly connected, GigabitEthernet2
C 10.2.30.0/24 is directly connected, GigabitEthernet3

148

L 10.2.30.4/32 is directly connected, GigabitEthernet3
B 10.99.99.0/24 [20/4294967294] via 10.2.20.3, 01:22:58

99.0.0.0/24 is subnetted, 1 subnets
B 99.99.99.0 [20/4294967294] via 172.16.6.3, 22:13:59

172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks
B 172.16.1.0/24 [20/4294967294] via 172.16.6.3, 22:12:40
B 172.16.2.0/24 [20/4294967294] via 172.16.6.3, 22:12:40
C 172.16.6.0/24 is directly connected, GigabitEthernet5
L 172.16.6.4/32 is directly connected, GigabitEthernet5
B 172.16.99.0/24 [20/0] via 172.16.6.3, 22:13:59
csr1000v-E_CPE_A>

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is installing specific 10.99.99.0/24 from E_A_BIGIP using
specific ip route command:

csr1000v-E_CPE_A#sh ip route vrf internet 10.99.99.0 255.255.255.0

Routing Table: internet
Routing entry for 10.99.99.0/24
Known via "bgp 65201", distance 20, metric 4294967294
Tag 65202, type external
Last update from 10.2.20.3 00:00:02 ago
Routing Descriptor Blocks:

* 10.2.20.3, from 10.2.20.3, 00:00:02 ago
Route metric is 4294967294, traffic share count is 1
AS Hops 1
Route tag 65202
MPLS label: none

csr1000v-SP_C: Verify that csr1000v-SP_C is installing 10.99.99.0/24 via East DC because Origin attribute
is IGP versus incomplete via for West DC:

You can telnet to csr1000v-SP_C from the jumpbox @ 192.168.1.15 with root/default user/pass:

ubuntu@jumphost:~$ telnet 192.168.1.15
Trying 192.168.1.15...
Connected to 192.168.1.15.
Escape character is '^]'.

User Access Verification

Username: root
Password:
csr1000v-SP_C>

csr1000v-SP_C: Verify that csr1000v-SP_C is installing 10.99.99.0/24 in BGP table via East DC. Note the
Best path is via AS 65002 988.

csr1000v-SP_C>sh ip bgp 10.99.99.0/24
BGP routing table entry for 10.99.99.0/24, version 16
Paths: (2 available, best #1, table default)

Advertised to update-groups:
1

Refresh Epoch 1
65002 988
172.16.99.4 from 172.16.99.4 (172.1.1.2)

Origin IGP, localpref 100, valid, external, best

149

rx pathid: 0, tx pathid: 0x0
Refresh Epoch 1
65001 65101, (aggregated by 65101 192.168.255.10)
172.16.99.3 from 172.16.99.3 (172.1.1.1)

Origin incomplete, localpref 100, valid, external, atomic-aggregate
rx pathid: 0, tx pathid: 0

Note: The BGP peering between E_CPE_A and SP_B leverages AS 988 as seen below. The following
command replaces the local private AS Path with 988 for prefixes originated from East DC to the SP Cloud.

csr1000v-E_CPE_A#sh run | i 988
neighbor 172.16.6.3 local-as 988 no-prepend replace-as
csr1000v-E_CPE_A#

csr1000v-SP_C: Verify that csr1000v-SP_C is installing 10.99.99.0/24 in the ip routing table:

csr1000v-SP_C>sh ip route 10.99.99.0 255.255.255.0
Routing entry for 10.99.99.0/24

Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:18:45 ago
Routing Descriptor Blocks:

* 172.16.99.4, from 172.16.99.4, 00:18:45 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none

Note: From the jump host you can now try to reach the website via E_A_BIGIP and validate the path is
installed via EAST DC.

Either open a web browser and browse to http://10.99.99.102 or from the jumpbox CLI, type:

curl http://10.99.99.102

Jumpbox: Curl from the jumphost to the virtual server.

root@jumphost:~# curl 10.99.99.102
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.

→˓</p>
</body></html>

Jumpbox: Traceroute from the jumphost to the virtual server to verify the path it is taking.

root@jumphost:~# traceroute 10.99.99.102

traceroute to 10.99.99.102 (10.99.99.102), 30 hops max, 60 byte packets
1 192.168.1.15 (192.168.1.15) 7.202 ms 8.251 ms 8.049 ms
2 172.16.99.4 (172.16.99.4) 22.485 ms 23.834 ms 36.059 ms
3 172.16.6.4 (172.16.6.4) 40.575 ms 40.425 ms 62.741 ms
4 10.99.99.102 (10.99.99.102) 64.284 ms 64.026 ms 91.206 ms

root@jumphost:~#

150

http://10.99.99.102

E_CPE_A_CSR1k: You can also validate from the CPE with telnet to 10.99.99.102 on port 80. Note that
you can clear the telnet session by executing “clear line vty 0” on the console of the CPE:

csr1000v-E_CPE_A>telnet 10.99.99.102 80 /vrf internet
Trying 10.99.99.102, 80 ... Open

csr1000v-SP_C: You can also validate via traceroute to 10.99.99.102 on SP_C:

csr1000v-SP_C>traceroute 10.99.99.102
Type escape sequence to abort.
Tracing the route to 10.99.99.102
VRF info: (vrf in name/id, vrf out name/id)

1 172.16.99.4 [AS 65001] 7 msec 5 msec 9 msec
2 172.16.6.4 [AS 65002] 10 msec 10 msec 14 msec
3 10.99.99.102 [AS 988] 13 msec 13 msec 15 msec

csr1000v-SP_C>

Note: Now lets move on and configure BGP on E_B_BIGIP.

Create an application configuration for a virtual server and a pool member on E_B_BIGIP-13:

E_B_BIGIP-13: Create the following virtual server and pool member on E_B_BIGIP-13:

tmsh create ltm pool pool1 members add { 10.3.99.200:80 } monitor tcp_half_open
tmsh create ltm virtual vip1 destination 10.99.99.102:80 source-address-translation {
→˓type automap } pool pool1 profiles add { tcp http }

tmsh save sys config partitions all

E_B_BIGIP-13: Your virtual server should now show available on E_B_BIGIP-13:

[root@E_B_BIGIP-13:Active:Standalone] config # tmsh show ltm virtual

--
Ltm::Virtual Server: vip1
--
Status
Availability : available
State : enabled
Reason : The virtual server is available
CMP : enabled
CMP Mode : all-cpus
Destination : 10.99.99.102:80

Configure the route advertisement on the E_B_BIGIP-13:

E_B_BIGIP-13: Configure the eBGP session on E_B_BIGIP-13 to East CPE_A. The CPE configuration is
already done for you so you only need to configure the BIG-IP side of session.

[root@E_B_BIGIP-13:Active:In Sync] config # imish -r 0
E_B_BIGIP-13.local[0]>enable
E_B_BIGIP-13.local[0]#config t
E_B_BIGIP-13.local[0](config)#router bgp 65203

151

E_B_BIGIP-13.local[0](config-router)# neighbor 10.2.30.4 remote-as 65201
E_B_BIGIP-13.local[0](config-router)# neighbor 10.2.30.4 description E_CPE_A
E_B_BIGIP-13.local[0](config-router)# neighbor 10.2.30.4 timers 3 9
E_A_BIGIP-13.local[0](config-router)# end
E_A_BIGIP-13.local[0]#write mem

E_B_BIGIP-13: Verify eBGP adjacencies are up between E_B_BIGIP-13 and the East CPE router -
E_CPE_A_CSR1k.

E_B_BIGIP-13.local[0]#sh ip bgp sum
BGP router identifier 10.2.50.3, local AS number 65203
BGP table version is 6
12 BGP AS-PATH entries
0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.2.30.4 4 65201 17 14 5 0 0 00:00:18 9
10.2.50.4 4 65205 385 350 6 0 0 02:52:20 10

Total number of neighbors 2
E_B_BIGIP-13.local[0]#

E_B_BIGIP-13: On E_B_BIGIP configure the following network statement for 10.99.99.0/24 such that prefix
is originated locally:

[root@E_B_BIGIP-13:Active:Standalone] config # imish -r 0
E_B_BIGIP-13.local[0]>en
E_B_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_B_BIGIP-13.local[0](config)#router bgp 65203
E_B_BIGIP-13.local[0](config-router)#network 10.99.99.0/24
E_B_BIGIP-13.local[0](config-router)#end
E_B_BIGIP-13.local[0]#wr
Building configuration...
[OK]
E_B_BIGIP-13.local[0]#

E_B_BIGIP-13: On E_B_BIGIP verify 10.99.99.0/24 is being locally originated which can be seen with
“Local”:

E_B_BIGIP-13.local[0]#sh ip bgp 10.99.99.0/24 | b Local

...skipping
Local
0.0.0.0 from 0.0.0.0 (10.2.50.3)

Origin IGP, localpref 100, weight 32768, valid, sourced, local, best
Last update: Mon Jul 16 19:29:34 2018

65201 65202
10.2.30.4 from 10.2.30.4 (2.2.2.2)

Origin IGP metric 0, localpref 100, valid, external
Last update: Mon Jul 16 19:02:03 2018

65205 65202
10.2.50.4 from 10.2.50.4 (3.3.3.3)

Origin IGP metric 0, localpref 100, valid, external
Last update: Mon Jul 16 19:02:03 2018

152

E_B_BIGIP-13: On E_B_BIGIP verify 10.99.99.0/24 is being advertised outbound to East CPE device via
E_CPE_A_CSR1k:

E_B_BIGIP-13.local[0]#sh ip bgp nei 10.2.30.4 advertised-routes | i 10.99.99.0/24

*> 10.99.99.0/24 10.2.30.3 100 32768 i

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is learning the 10.99.99.0/24 inbound from E_B_BIGIP:

Note: You can telnet to the CPE devices using the BGP neighbor IP address from Zebos using root/default
for user/pass:

Example telnet from E_B_BIGIP-13 to East CPE Device @ 10.2.30.4:

E_B_BIGIP-13.local[0]#telnet 10.2.30.4
Trying 10.2.30.4...
Connected to 10.2.30.4.
Escape character is '^]'.

User Access Verification

Username: root
Password:
csr1000v-E_CPE_A>

E_CPE_A_CSR1k: Continued. . . Verify that E_CPE_A_CSR1k is learning the 10.99.99.0/24 inbound from
E_B_BIGIP:

csr1000v-E_CPE_A>show ip bgp vpnv4 vrf internet neighbors 10.2.30.3 routes
BGP table version is 28, local router ID is 2.2.2.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,

r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
x best-external, a additional-path, c RIB-compressed,
t secondary path,

Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found

Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 65201:1000 (default for vrf internet)

*m 3.3.3.3/32 10.2.30.3 4294967295 0 65203 65205 i

*m 10.99.99.0/24 10.2.30.3 4294967295 0 65203 i

Total number of prefixes 2

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is installing 10.99.99.0/24 from E_B_BIGIP using ip route
command. Notice the next hop of E_A_BIGIP @ 10.2.20.3 & E_B_BIGIP @ 10.2.30.3:

csr1000v-E_CPE_A>sh ip route vrf internet

Routing Table: internet
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

153

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 2 subnets
B 1.1.1.1 [20/4294967294] via 172.16.6.3, 23:39:09
B 1.1.1.2 [20/4294967294] via 172.16.6.3, 23:39:11

3.0.0.0/32 is subnetted, 1 subnets
B 3.3.3.3 [20/4294967294] via 10.2.30.3, 00:37:06

[20/4294967294] via 10.2.20.3, 00:37:06
10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks

C 10.2.20.0/24 is directly connected, GigabitEthernet2
L 10.2.20.4/32 is directly connected, GigabitEthernet2
C 10.2.30.0/24 is directly connected, GigabitEthernet3
L 10.2.30.4/32 is directly connected, GigabitEthernet3
B 10.99.99.0/24 [20/4294967294] via 10.2.30.3, 00:34:33

[20/4294967294] via 10.2.20.3, 00:34:33
99.0.0.0/24 is subnetted, 1 subnets

B 99.99.99.0 [20/4294967294] via 172.16.6.3, 23:40:38
172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks

B 172.16.1.0/24 [20/4294967294] via 172.16.6.3, 23:39:19
B 172.16.2.0/24 [20/4294967294] via 172.16.6.3, 23:39:19
C 172.16.6.0/24 is directly connected, GigabitEthernet5
L 172.16.6.4/32 is directly connected, GigabitEthernet5
B 172.16.99.0/24 [20/0] via 172.16.6.3, 23:40:38

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is now installing specific 10.99.99.0/24 from E_B_BIGIP
using specific ip route command. Notice the next hop of E_A_BIGIP @ 10.2.20.3 & E_B_BIGIP @
10.2.30.3:

csr1000v-E_CPE_A>sh ip route vrf internet 10.99.99.0 255.255.255.0

Routing Table: internet
Routing entry for 10.99.99.0/24
Known via "bgp 65201", distance 20, metric 4294967294
Tag 65202, type external
Last update from 10.2.20.3 00:39:40 ago
Routing Descriptor Blocks:

* 10.2.30.3, from 10.2.30.3, 00:39:40 ago
Route metric is 4294967294, traffic share count is 1
AS Hops 1
Route tag 65202
MPLS label: none
10.2.20.3, from 10.2.20.3, 00:39:40 ago
Route metric is 4294967294, traffic share count is 1
AS Hops 1
Route tag 65202
MPLS label: none

csr1000v-E_CPE_A>

Note: Congratulations! You now have eBGP Multipath Loadsharing working within the East DC! As seen
above, this will trigger ECMP for 10.99.99.0/24 on E_CPE_A_CSR1k towards E_A_BIGIP and E_B_BIGIP.
Note that normally the weight, local preference, AS path length, origin, med, etc. would need to be the
same for the parallel routes to be installed in the routing table.

It is worth noting that this behavior various from version to version of IOS. In this lab, we are using IOS-XE
Version 16.3.6. With this version, the entire AS path needs to be the same for multipath condition to be met.

154

How did we work around this? The following hidden command is used on the CPE to ignore the different
AS Path and install the route as multipath if all other conditions are met:

csr1000v-E_CPE_A#sh run | i as-path
bgp bestpath as-path multipath-relax
csr1000v-E_CPE_A#

csr1000v-SP_C: Verify that nothing changed on csr1000v-SP_C and it is still installing 10.99.99.0/24 via
East DC because Origin attribute is IGP versus incomplete for West DC:

csr1000v-SP_C: Verify that csr1000v-SP_C is installing 10.99.99.0/24 in BGP table via East DC. Recall the
Best path leveraging EAST DC is via AS 65002 988.

csr1000v-SP_C>sh ip bgp 10.99.99.0/24
BGP routing table entry for 10.99.99.0/24, version 16
Paths: (2 available, best #1, table default)

Advertised to update-groups:
1

Refresh Epoch 1
65002 988
172.16.99.4 from 172.16.99.4 (172.1.1.2)

Origin IGP, localpref 100, valid, external, best
rx pathid: 0, tx pathid: 0x0

Refresh Epoch 1
65001 65101, (aggregated by 65101 192.168.255.10)
172.16.99.3 from 172.16.99.3 (172.1.1.1)

Origin incomplete, localpref 100, valid, external, atomic-aggregate
rx pathid: 0, tx pathid: 0

csr1000v-SP_C: Verify that csr1000v-SP_C is installing 10.99.99.0/24 in the ip routing table:

csr1000v-SP_C>sh ip route 10.99.99.0 255.255.255.0
Routing entry for 10.99.99.0/24

Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:18:45 ago
Routing Descriptor Blocks:

* 172.16.99.4, from 172.16.99.4, 00:18:45 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none

Note: As seen above, all traffic from the Jumpbox via SP_C destined to 10.99.99.0/24 is currently via the
East DC. This is because EAST DC wins the tiebreaker as the Origin attribute is IGP versus incomplete for
West DC

At this moment, you can only curl to 10.99.99.102 VIP in the EAST DC via the jumpbox.

Place E_A_BIGIP into maintenance mode within the East DC by using BGP AS Path Prepending:

E_A_BIGIP-13: Create AS-Path-Prepend-OUT route-map on E_A_BIGIP for 10.99.99.0/24 to insert 1 AS
Path prepend into the prefix:

155

[root@E_A_BIGIP-13:Active:Standalone] config # imish -r 0
E_A_BIGIP-13.local[0]>en
E_A_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_A_BIGIP-13.local[0](config)#
E_A_BIGIP-13.local[0](config)#ip prefix-list as-path-prepend-prefix seq 10 permit 10.
→˓99.99.0/24
E_A_BIGIP-13.local[0](config)#
E_A_BIGIP-13.local[0](config)#route-map AS-Path-Prepend-OUT permit 100
E_A_BIGIP-13.local[0](config-route-map)# match ip address prefix-list as-path-prepend-
→˓prefix
E_A_BIGIP-13.local[0](config-route-map)# set as-path prepend 988
E_A_BIGIP-13.local[0](config-route-map)#!
E_A_BIGIP-13.local[0](config-route-map)#route-map AS-Path-Prepend-OUT permit 200
E_A_BIGIP-13.local[0](config-route-map)#!
E_A_BIGIP-13.local[0](config-route-map)#router bgp 65202
E_A_BIGIP-13.local[0](config-router)#nei 10.2.20.4 route-map AS-Path-Prepend-OUT out
E_A_BIGIP-13.local[0](config-router)#end
E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#clear ip bgp *

E_A_BIGIP-13: Verify AS-Path-Prepend-OUT has inserted 1 AS Path prepend into the prefix towards CPE
@ 10.2.20.4:

E_A_BIGIP-13.local[0]#sh ip bgp nei 10.2.20.4 advertised-routes | i 10.99.99.0

*> 10.99.99.0/24 10.2.20.3 100 32768 988 i

E_CPE_A_CSR1k: Verify AS-Path-Prepending inbound on E_CPE_A for 10.99.99.0/24 from E_A_BIGIP:

csr1000v-E_CPE_A>show ip bgp vpnv4 vrf internet neighbors 10.2.20.3 routes
BGP table version is 56, local router ID is 2.2.2.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,

r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
x best-external, a additional-path, c RIB-compressed,
t secondary path,

Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found

Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 65201:1000 (default for vrf internet)

*> 3.3.3.3/32 10.2.20.3 4294967295 0 65202 65205 i

* 10.99.99.0/24 10.2.20.3 4294967295 0 65202 988 i

E_CPE_A_CSR1k: Verify that E_A_BIGIP is no longer an installed route or preferred in BGP RIB for
10.99.99.0/24 on E_CPE_A. You will Note that the next hop for 10.99.99.0/24 is E_B_BIGIP @ 10.2.30.3
and not E_A_BIGIP @ 10.2.20.3.

csr1000v-E_CPE_A>sh ip route vrf internet

Routing Table: internet
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route

156

+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 2 subnets
B 1.1.1.1 [20/4294967294] via 172.16.6.3, 1d01h
B 1.1.1.2 [20/4294967294] via 172.16.6.3, 1d01h

3.0.0.0/32 is subnetted, 1 subnets
B 3.3.3.3 [20/4294967294] via 10.2.30.3, 00:05:07

[20/4294967294] via 10.2.20.3, 00:05:07
10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks

C 10.2.20.0/24 is directly connected, GigabitEthernet2
L 10.2.20.4/32 is directly connected, GigabitEthernet2
C 10.2.30.0/24 is directly connected, GigabitEthernet3
L 10.2.30.4/32 is directly connected, GigabitEthernet3
B 10.99.99.0/24 [20/4294967294] via 10.2.30.3, 00:05:11

99.0.0.0/24 is subnetted, 1 subnets
B 99.99.99.0 [20/4294967294] via 172.16.6.3, 1d01h

172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks
B 172.16.1.0/24 [20/4294967294] via 172.16.6.3, 1d01h
B 172.16.2.0/24 [20/4294967294] via 172.16.6.3, 1d01h
C 172.16.6.0/24 is directly connected, GigabitEthernet5
L 172.16.6.4/32 is directly connected, GigabitEthernet5
B 172.16.99.0/24 [20/0] via 172.16.6.3, 1d01h
csr1000v-E_CPE_A>

Note: Congratulations! E_A_BIGIP has successfully been placed in maintenance mode within the East
DC and is no longer taking any traffic. This was achieved by inserting the additional AS Path prepend in the
previous step eliminating this as a candidate for BGP multipath selection on E_CPE_A. Let’s continue with
additional validation.

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is now installing specific 10.99.99.0/24 from E_B_BIGIP
using specific ip route command. Notice the next hop of E_B_BIGIP @ 10.2.30.3:

csr1000v-E_CPE_A>sh ip route vrf internet 10.99.99.0 255.255.255.0

Routing Table: internet
Routing entry for 10.99.99.0/24

Known via "bgp 65201", distance 20, metric 4294967294
Tag 65203, type external
Last update from 10.2.30.3 00:00:24 ago
Routing Descriptor Blocks:

* 10.2.30.3, from 10.2.30.3, 00:00:24 ago
Route metric is 4294967294, traffic share count is 1
AS Hops 1
Route tag 65203
MPLS label: none

E_CPE_A_CSR1k: Verify that E_CPE_A_CSR1k is now installing specific 10.99.99.0/24 from E_B_BIGIP
using specific ip bgp command. Notice the best path is via E_B_BIGIP @ 10.2.30.3 due to AS Path length:

csr1000v-E_CPE_A>show ip bgp vpnv4 vrf internet 10.99.99.0

BGP routing table entry for 65201:1000:10.99.99.0/24, version 53
BGP Bestpath: deterministic-med: aigp-ignore: med
Paths: (2 available, best #1, table internet)

157

Multipath: eiBGP
Advertised to update-groups:

3 4
Refresh Epoch 1
65203
10.2.30.3 (via vrf internet) from 10.2.30.3 (10.2.50.3)

Origin IGP, metric 4294967295, localpref 100, valid, external, best
Extended Community: RT:65201:1000
rx pathid: 0, tx pathid: 0x0

Refresh Epoch 1
65202 988
10.2.20.3 (via vrf internet) from 10.2.20.3 (10.2.40.3)

Origin IGP, metric 4294967295, localpref 100, valid, external
Extended Community: RT:65201:1000
rx pathid: 0, tx pathid: 0

csr1000v-SP_C: Verify path via Virtual Server 10.99.99.102 is still up via East DC @ E_B_BIGIP now that
E_A_BIGIP is in maintenance mode within East DC:

csr1000v-SP_C>traceroute 10.99.99.102
Type escape sequence to abort.
Tracing the route to 10.99.99.102
VRF info: (vrf in name/id, vrf out name/id)

1 172.16.99.4 [AS 65001] 7 msec 7 msec 8 msec
2 172.16.6.4 [AS 65002] 12 msec 14 msec 14 msec
3 10.99.99.102 [AS 988] 18 msec 12 msec 13 msec

csr1000v-SP_C>

Reminder: You can telnet to csr1000v-SP_C from the jumpbox @ 192.168.1.15 with root/default user/pass:

ubuntu@jumphost:~$ telnet 192.168.1.15
Trying 192.168.1.15...
Connected to 192.168.1.15.
Escape character is '^]'.

User Access Verification

Username: root
Password:
csr1000v-SP_C>

Jumpbox: Verify curl to Virtual Server 10.99.99.102 is still up via East DC @ E_B_BIGIP:

root@jumphost:~# curl 10.99.99.102
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

Jumpbox: Verify traceroute to Virtual Server 10.99.99.102 is still up via East DC @ E_B_BIGIP:

root@jumphost:~# traceroute 10.99.99.102
traceroute to 10.99.99.102 (10.99.99.102), 30 hops max, 60 byte packets

1 192.168.1.15 (192.168.1.15) 13.403 ms 13.047 ms 12.418 ms
2 172.16.99.4 (172.16.99.4) 12.830 ms 12.649 ms 12.351 ms
3 172.16.6.4 (172.16.6.4) 31.121 ms 44.958 ms 44.866 ms

158

4 10.99.99.102 (10.99.99.102) 44.458 ms 45.634 ms 60.454 ms
root@jumphost:~#

Note: Now that E_A_BIGIP is in maintenance mode we only have E_B_BIGIP taking all the traffic within
the East DC for Virtual Servers on 10.99.99.0/24 via SP_C.

Let’s also match AS Path Prepending on E_B_BIGIP such that both East BIG IP’s have been added to
maintenance mode and are no longer taking any traffic via SP_C.

This is because the AS Path will be longer via East DC as compared to West DC after we make the next
set of changes.

Create AS-Path-Prepend-OUT route-map on E_B_BIGIP for 10.99.99.0/24 to insert 1 AS Path prepend
into the prefix:

E_B_BIGIP-13: Create AS-Path-Prepend-OUT route-map on E_B_BIGIP for 10.99.99.0/24 to insert 1 AS
Path prepend into the prefix:

[root@E_B_BIGIP-13:Active:Standalone] config # imish -r 0
E_B_BIGIP-13.local[0]>en
E_B_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_B_BIGIP-13.local[0](config)#ip prefix-list as-path-prepend-prefix seq 10 permit 10.
→˓99.99.0/24
E_B_BIGIP-13.local[0](config)#
E_B_BIGIP-13.local[0](config)#route-map AS-Path-Prepend-OUT permit 100
E_B_BIGIP-13.local[0](config-route-map)# match ip address prefix-list as-path-prepend-
→˓prefix
E_B_BIGIP-13.local[0](config-route-map)# set as-path prepend 988
E_B_BIGIP-13.local[0](config-route-map)#route-map AS-Path-Prepend-OUT permit 200
E_B_BIGIP-13.local[0](config-route-map)#router bgp 65203
E_B_BIGIP-13.local[0](config-router)#neighbor 10.2.30.4 route-map AS-Path-Prepend-OUT
→˓out
E_B_BIGIP-13.local[0](config-router)#end
E_B_BIGIP-13.local[0]#wr
E_B_BIGIP-13.local[0]#clear ip bgp *

E_B_BIGIP-13: Verify AS-Path-Prepend-OUT has inserted 1 AS Path prepend into the prefix towards CPE
@ 10.2.30.4:

E_B_BIGIP-13.local[0]#sh ip bgp nei 10.2.30.4 advertised-routes | i 10.99.99.0/24

*> 10.99.99.0/24 10.2.30.3 100 32768 988 i

E_CPE_A_CSR1k: Verify AS-Path-Prepending inbound on E_CPE_A for 10.99.99.0/24 from E_B_BIGIP.

csr1000v-E_CPE_A>show ip bgp vpnv4 vrf internet neighbors 10.2.30.3 routes
BGP table version is 71, local router ID is 2.2.2.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,

r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
x best-external, a additional-path, c RIB-compressed,
t secondary path,

Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found

Network Next Hop Metric LocPrf Weight Path

159

Route Distinguisher: 65201:1000 (default for vrf internet)

*m 3.3.3.3/32 10.2.30.3 4294967295 0 65203 65205 i

*m 10.99.99.0/24 10.2.30.3 4294967295 0 65203 988 i

Total number of prefixes 2

Note: You will also notice the ‘m’ notation has been restored above. This means the prefixes are selected
for multipath since we have equalized the previous AS Path prepend configured on E_A_BIGIP.

Let’s move along. . .

E_CPE_A_CSR1k: Verify that both E_A_BIGIP & E_B_BIGIP is now valid again for 10.99.99.0/24 on
E_CPE_A. You will Note that the next hop for 10.99.99.0/24 is both E_A_BIGIP @ 10.2.20.3 and E_B_BIGIP
@ 10.2.30.3

csr1000v-E_CPE_A>sh ip route vrf internet

Routing Table: internet
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 2 subnets
B 1.1.1.1 [20/4294967294] via 172.16.6.3, 1d01h
B 1.1.1.2 [20/4294967294] via 172.16.6.3, 1d01h

3.0.0.0/32 is subnetted, 1 subnets
B 3.3.3.3 [20/4294967294] via 10.2.30.3, 00:08:00

[20/4294967294] via 10.2.20.3, 00:08:00
10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks

C 10.2.20.0/24 is directly connected, GigabitEthernet2
L 10.2.20.4/32 is directly connected, GigabitEthernet2
C 10.2.30.0/24 is directly connected, GigabitEthernet3
L 10.2.30.4/32 is directly connected, GigabitEthernet3
B 10.99.99.0/24 [20/4294967294] via 10.2.30.3, 00:07:57

[20/4294967294] via 10.2.20.3, 00:07:57
99.0.0.0/24 is subnetted, 1 subnets

B 99.99.99.0 [20/4294967294] via 172.16.6.3, 1d01h
172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks

B 172.16.1.0/24 [20/4294967294] via 172.16.6.3, 1d01h
B 172.16.2.0/24 [20/4294967294] via 172.16.6.3, 1d01h
C 172.16.6.0/24 is directly connected, GigabitEthernet5
L 172.16.6.4/32 is directly connected, GigabitEthernet5
B 172.16.99.0/24 [20/0] via 172.16.6.3, 1d01h
csr1000v-E_CPE_A>

Note: Congratulations! E_B_BIGIP has successfully been placed in maintenance mode within the East
DC and is no longer taking any traffic. This was achieved by inserting the additional AS Path prepend in the

160

previous step eliminating this as a candidate for BGP multipath selection on E_CPE_A.

Now the entire East DC is in maintenance mode as both E_A_BIGIP and E_B_BIGIP are no longer taking
traffic.

That is, 10.99.99.0/24 is preferred via the West DC from the jumpbox when leveraging SP_C. Let’s continue
with additional validation.

E_CPE_A_CSR1k: We can observe that prepending is happening for 10.99.99.0/24 on E_CPE_A for both
E_A_BIGIP & E_B_BIGIP:

csr1000v-E_CPE_A>show ip bgp vpnv4 vrf internet | i 988

*m 10.99.99.0/24 10.2.30.3 4294967295 0 65203 988 i

*> 10.2.20.3 4294967295 0 65202 988 i

csr1000v-SP_C: Verify 10.99.99.0/24 is available on SP_C BGP RIB table via East DC. You will notice the
best path is via West DC via AS 65101.

Reminder: You can telnet to csr1000v-SP_C from the jumpbox @ 192.168.1.15 with root/default user/pass:

csr1000v-SP_C>sh ip bgp 10.99.99.100/24
BGP routing table entry for 10.99.99.0/24, version 25
Paths: (2 available, best #2, table default)

Advertised to update-groups:
1

Refresh Epoch 1
65002 988 988
172.16.99.4 from 172.16.99.4 (172.1.1.2)

Origin IGP, localpref 100, valid, external
rx pathid: 0, tx pathid: 0

Refresh Epoch 1
65001 65101, (aggregated by 65101 192.168.255.10)
172.16.99.3 from 172.16.99.3 (172.1.1.1)

Origin incomplete, localpref 100, valid, external, atomic-aggregate, best
rx pathid: 0, tx pathid: 0x0

csr1000v-SP_C: Verify 10.99.99.0/24 is no longer installed on SP_C IP routing table via East DC. You will
notice the route installed is via West DC via AS 65001.

csr1000v-SP_C>sh ip route 10.99.99.100
Routing entry for 10.99.99.0/24

Known via "bgp 65003", distance 20, metric 0
Tag 65001, type external
Last update from 172.16.99.3 00:07:29 ago
Routing Descriptor Blocks:

* 172.16.99.3, from 172.16.99.3, 00:07:29 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65001
MPLS label: none

Note: This prefix is no longer installed in the routing table via East DC because the AS Path length is larger
than that of West DC. At this point traffic is now via West DC for 10.99.99.0/24 from SP_C point-of-view.

csr1000v-SP_C: Verify path via Virtual Server 10.99.99.101 is now via West DC - AS 65101. Note that
below output may not be an exact match as this can be via either 172.16.1.4 or 172.16.2.4 leveraging AS
65101 via West_CPE_A or West_CPE_B.

161

csr1000v-SP_C>traceroute 10.99.99.101
Type escape sequence to abort.
Tracing the route to 10.99.99.101
VRF info: (vrf in name/id, vrf out name/id)

1 172.16.99.3 [AS 65001] 8 msec 8 msec 7 msec
2 172.16.1.4 [AS 65001] 11 msec 8 msec 10 msec
3 10.99.99.101 [AS 65101] 14 msec 13 msec 15 msec

csr1000v-SP_C>

Jumpbox: Verify curl to Virtual Server 10.99.99.101 is up via West DC:

root@jumphost:~# curl 10.99.99.101
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>
root@jumphost:~#

Jumpbox: Verify traceroute to Virtual Server 10.99.99.101 is West DC. Note that below output may not be
an exact match as this can be via either 172.16.1.4 or 172.16.2.4 leveraging AS 65101 via West_CPE_A or
West_CPE_B.

root@jumphost:~# traceroute 10.99.99.101
traceroute to 10.99.99.101 (10.99.99.101), 30 hops max, 60 byte packets

1 192.168.1.15 (192.168.1.15) 2.504 ms 15.470 ms 15.277 ms
2 172.16.99.3 (172.16.99.3) 18.709 ms 19.369 ms 19.762 ms
3 172.16.2.4 (172.16.2.4) 25.569 ms 28.738 ms 44.922 ms
4 10.99.99.101 (10.99.99.101) 44.591 ms 47.980 ms 51.598 ms

root@jumphost:~#

Anycast DC Failover section - Swing Traffic back to East DC by adding 2 x /25 specific routes which
comprise of the overall 10.99.99.0 /24

Note: In previous section we verified that 10.99.99.0/24 is only installed in the IP Routing table of SP_C
via West DC. However, East DC is available as backup path in BGP RIB.

In this section we will swing traffic back to East DC by utilizing 2 x /25’s.

E_A_BIGIP-13: Configure BGP on E_A_BIGIP-13 to originate 10.99.99.0 /25 and 10.99.99.128 /25:

[root@E_A_BIGIP-13:Active:Standalone] config # imish -r 0
E_A_BIGIP-13.local[0]>en
E_A_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_A_BIGIP-13.local[0](config)#router bgp 65202
E_A_BIGIP-13.local[0](config-router)#network 10.99.99.0/25
E_A_BIGIP-13.local[0](config-router)#network 10.99.99.128/25
E_A_BIGIP-13.local[0](config)#end
E_A_BIGIP-13.local[0]#clear ip bgp *
E_A_BIGIP-13.local[0]#wr
Building configuration...

E_A_BIGIP-13: Verify 10.99.99.0/24, 10.99.99.0/25, and 10.99.99.128/25 are advertised via E_A_BIGIP to
E_CPE_A @ 10.2.20.4:

162

E_A_BIGIP-13.local[0]#sh ip bgp nei 10.2.20.4 ad
BGP table version is 2, local router ID is 10.2.40.3
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

*> 3.3.3.3/32 10.2.20.3 0 65205 i

*> 10.3.99.0/24 10.2.20.3 0 65205 i

*> 10.99.99.0/24 10.2.20.3 100 32768 988 i

*> 10.99.99.0/25 10.2.20.3 100 32768 i

*> 10.99.99.128/25 10.2.20.3 100 32768 i

Total number of prefixes 5

csr1000v-SP_C: Verify 10.99.99.0/25 is available on SP_C BGP RIB table via East DC leveraging
10.99.99.0 /25. You will notice the best path is via East DC via AS 65002 988.

Reminder: You can telnet to csr1000v-SP_C from the jumpbox @ 192.168.1.15 with root/default user/pass.

csr1000v-SP_C>sh ip bgp 10.99.99.102
BGP routing table entry for 10.99.99.0/25, version 30
Paths: (2 available, best #2, table default)

Advertised to update-groups:
1

Refresh Epoch 1
65001 65002 988

172.16.99.3 from 172.16.99.3 (172.1.1.1)
Origin IGP, localpref 100, valid, external
rx pathid: 0, tx pathid: 0

Refresh Epoch 1
65002 988

172.16.99.4 from 172.16.99.4 (172.1.1.2)
Origin IGP, localpref 100, valid, external, best
rx pathid: 0, tx pathid: 0x0

csr1000v-SP_C: Let’s also verify 10.99.99.0/25

csr1000v-SP_C>sh ip bgp 10.99.99.0/25
BGP routing table entry for 10.99.99.0/25, version 26
Paths: (2 available, best #2, table default)

Advertised to update-groups:
1

Refresh Epoch 1
65001 65002 988
172.16.99.3 from 172.16.99.3 (172.1.1.1)

Origin IGP, localpref 100, valid, external
rx pathid: 0, tx pathid: 0

Refresh Epoch 1
65002 988

172.16.99.4 from 172.16.99.4 (172.1.1.2)
Origin IGP, localpref 100, valid, external, best
rx pathid: 0, tx pathid: 0x0

csr1000v-SP_C: Verify 10.99.99.102 is installed on SP_C IP routing table via East DC leveraging
10.99.99.0/25. You will notice the route installed is via East DC via AS 65002.

csr1000v-SP_C>sh ip route 10.99.99.102
Routing entry for 10.99.99.0/25

163

Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:03:10 ago
Routing Descriptor Blocks:

* 172.16.99.4, from 172.16.99.4, 00:03:10 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none

Note: You will observe that the IP Routing table of SP_C will prefer the path via East DC for the
10.99.99.102 Virtual Server due longest match of 10.99.99.0/25 even though 10.99.99.0/24 is via West
DC.

We can expect the same behavior with 10.99.99.128 /25. Let’s validate.

csr1000v-SP_C: Verify 10.99.99.128 /25 is available on SP_C IP BGP RIB table via East DC. You will notice
the best path is via East DC via AS 65002 988.

csr1000v-SP_C>sh ip bgp 10.99.99.128/25
BGP routing table entry for 10.99.99.128/25, version 39
Paths: (2 available, best #2, table default)

Advertised to update-groups:
1

Refresh Epoch 1
65001 65002 988
172.16.99.3 from 172.16.99.3 (172.1.1.1)

Origin IGP, localpref 100, valid, external
rx pathid: 0, tx pathid: 0

Refresh Epoch 1
65002 988
172.16.99.4 from 172.16.99.4 (172.1.1.2)

Origin IGP, localpref 100, valid, external, best
rx pathid: 0, tx pathid: 0x0

csr1000v-SP_C: Verify 10.99.99.128 /25 is installed on SP_C IP routing table via East DC leveraging
10.99.99.128 /25. You will notice the route installed is via East DC via AS 65002.

csr1000v-SP_C>sh ip route 10.99.99.128 255.255.255.128
Routing entry for 10.99.99.128/25

Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:03:16 ago
Routing Descriptor Blocks:

* 172.16.99.4, from 172.16.99.4, 00:03:16 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none

Note: What observations are made with 10.99.99.0/24? You will notice this remains the same with West
DC preferred via AS Path length for 10.99.99.0/24.

csr1000v-SP_C: Verify 10.99.99.0 /24 is available on SP_C BGP RIB table via West DC. You will notice the

164

best path is via West DC via AS 65101.

csr1000v-SP_C>sh ip bgp 10.99.99.0/24
BGP routing table entry for 10.99.99.0/24, version 25
Paths: (2 available, best #2, table default)

Advertised to update-groups:
1

Refresh Epoch 1
65002 988 988
172.16.99.4 from 172.16.99.4 (172.1.1.2)

Origin IGP, localpref 100, valid, external
rx pathid: 0, tx pathid: 0

Refresh Epoch 1
65001 65101, (aggregated by 65101 192.168.255.10)
172.16.99.3 from 172.16.99.3 (172.1.1.1)

Origin incomplete, localpref 100, valid, external, atomic-aggregate, best
rx pathid: 0, tx pathid: 0x0

csr1000v-SP_C: Verify 10.99.99.0 /24 is available on SP_C IP routing table via West DC. You will notice the
best path is via West DC via AS 65001.

csr1000v-SP_C>sh ip route 10.99.99.0 255.255.255.0
Routing entry for 10.99.99.0/24

Known via "bgp 65003", distance 20, metric 0
Tag 65001, type external
Last update from 172.16.99.3 01:00:50 ago
Routing Descriptor Blocks:

* 172.16.99.3, from 172.16.99.3, 01:00:50 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65001
MPLS label: none

csr1000v-SP_C: Verify path via Virtual Server 10.99.99.102 is now via East DC due to the /25’s being
originated from East DC via E_A_BIGIP-13 .

csr1000v-SP_C>traceroute 10.99.99.102
Type escape sequence to abort.
Tracing the route to 10.99.99.102
VRF info: (vrf in name/id, vrf out name/id)

1 172.16.99.4 [AS 65001] 7 msec 6 msec 8 msec
2 172.16.6.4 [AS 65002] 9 msec 12 msec 10 msec
3 10.99.99.102 [AS 988] 17 msec 21 msec 16 msec

csr1000v-SP_C>

Jumpbox: Verify curl to Virtual Server 10.99.99.102 is up via East DC:

root@jumphost:~# curl 10.99.99.102
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>
root@jumphost:~#

Jumpbox: Verify traceroute to Virtual Server 10.99.99.102 is East DC.

root@jumphost:~# traceroute 10.99.99.102
traceroute to 10.99.99.102 (10.99.99.102), 30 hops max, 60 byte packets

165

1 192.168.1.15 (192.168.1.15) 14.200 ms 14.073 ms 13.654 ms
2 172.16.99.4 (172.16.99.4) 21.305 ms 27.179 ms 27.071 ms
3 172.16.6.4 (172.16.6.4) 26.755 ms 26.447 ms 26.119 ms
4 10.99.99.102 (10.99.99.102) 36.549 ms 48.875 ms 48.795 ms

root@jumphost:~#

Note: Congratulations! You have successfully swing traffic back to the East DC even though 10.99.99.0/24
is currently preferred via West DC from SP_C. This was accomplished by introducing specific /25’s from the
East DC via E_A_BIGIP-13.

Let’s finish this off as you are in the home stretch! We will finish the East DC by originating the
same /25’s on E_B_BIGIP-13 for consistency with E_A_BIGIP-13.

Re-introduce E_B_BIGIP-13 in the East DC via the /25’s:

In this section we will finish the configuration on the East DC to originate the 2 x /25’s on E_B_BIGIP-13.
This will match the origination of 2 x 25’s previously completed on E_A_BIGIP-13.

E_B_BIGIP-13: Configure BGP on E_B_BIGIP-13 to originate 10.99.99.0 /25 and 10.99.99.128 /25:

[root@E_B_BIGIP-13:Active:Standalone] config # imish -r 0
E_B_BIGIP-13.local[0]>enE_B_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_B_BIGIP-13.local[0](config)#router bgp 65203
E_B_BIGIP-13.local[0](config-router)#network 10.99.99.0/25
E_B_BIGIP-13.local[0](config-router)#network 10.99.99.128/25
E_B_BIGIP-13.local[0](config)#end
E_B_BIGIP-13.local[0]#clear ip bgp *
E_B_BIGIP-13.local[0]#wr
Building configuration...

E_B_BIGIP-13: Verify 10.99.99.0/24, 10.99.99.0/25, and 10.99.99.128/25 are advertised via E_B_BIGIP to
E_CPE_A @ 10.2.30.4:

E_B_BIGIP-13.local[0]#sh ip bgp nei 10.2.30.4 advertised-routes
BGP table version is 9, local router ID is 10.2.50.3
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

*> 3.3.3.3/32 10.2.30.3 0 65205 i

*> 10.3.99.0/24 10.2.30.3 0 65205 i

*> 10.99.99.0/24 10.2.30.3 100 32768 988 i

*> 10.99.99.0/25 10.2.30.3 100 32768 i

*> 10.99.99.128/25 10.2.30.3 100 32768 i

E_CPE_A_CSR1k: Verify that 10.99.99.0/24, 10.99.99.0/24, and 10.99.99.128/25 are learned via the rout-
ing table on E_CPE_A from both E_A_BIGIP @ 10.2.20.3 and E_B_BIGIP @ 10.2.30.3

csr1000v-E_CPE_A>sh ip route vrf internet

Routing Table: internet
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

166

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 2 subnets
B 1.1.1.1 [20/4294967294] via 172.16.6.3, 1d02h
B 1.1.1.2 [20/4294967294] via 172.16.6.3, 1d02h

3.0.0.0/32 is subnetted, 1 subnets
B 3.3.3.3 [20/4294967294] via 10.2.30.3, 00:04:59

[20/4294967294] via 10.2.20.3, 00:04:59
10.0.0.0/8 is variably subnetted, 7 subnets, 3 masks

C 10.2.20.0/24 is directly connected, GigabitEthernet2
L 10.2.20.4/32 is directly connected, GigabitEthernet2
C 10.2.30.0/24 is directly connected, GigabitEthernet3
L 10.2.30.4/32 is directly connected, GigabitEthernet3
B 10.99.99.0/24 [20/4294967294] via 10.2.30.3, 00:05:20

[20/4294967294] via 10.2.20.3, 00:05:20
B 10.99.99.0/25 [20/4294967294] via 10.2.30.3, 00:05:28

[20/4294967294] via 10.2.20.3, 00:05:28
B 10.99.99.128/25 [20/4294967294] via 10.2.30.3, 00:05:28

[20/4294967294] via 10.2.20.3, 00:05:28
99.0.0.0/24 is subnetted, 1 subnets

B 99.99.99.0 [20/4294967294] via 172.16.6.3, 1d03h
172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks

B 172.16.1.0/24 [20/4294967294] via 172.16.6.3, 1d02h
B 172.16.2.0/24 [20/4294967294] via 172.16.6.3, 1d02h
C 172.16.6.0/24 is directly connected, GigabitEthernet5
L 172.16.6.4/32 is directly connected, GigabitEthernet5
B 172.16.99.0/24 [20/0] via 172.16.6.3, 1d03h
csr1000v-E_CPE_A>

E_CPE_A_CSR1k: As an example, let’s take a closer look the bgp table for 10.99.99.128/25 on E_CPE_A:

csr1000v-E_CPE_A>sh ip bgp vpnv4 vrf internet 10.99.99.128/25
BGP routing table entry for 65201:1000:10.99.99.128/25, version 98
BGP Bestpath: deterministic-med: aigp-ignore: med
Paths: (2 available, best #1, table internet)
Multipath: eiBGP

Advertised to update-groups:
3 4

Refresh Epoch 1
65202
10.2.20.3 (via vrf internet) from 10.2.20.3 (10.2.40.3)

Origin IGP, metric 4294967295, localpref 100, valid, external, multipath, best
Extended Community: RT:65201:1000
rx pathid: 0, tx pathid: 0x0

Refresh Epoch 1
65203
10.2.30.3 (via vrf internet) from 10.2.30.3 (10.2.50.3)

Origin IGP, metric 4294967295, localpref 100, valid, external,
→˓multipath(oldest)

Extended Community: RT:65201:1000

167

rx pathid: 0, tx pathid: 0

csr1000v-SP_C: Verify nothing changed w.r.t. 10.99.99.0/25 and 10.99.99.128/25 and are still in the IP
Routing table of SP_C via East DC after adding the /25’s on E_B_BIGIP-13.

First let’s take a look at the BGP table and confirm nothing changed since we previously added the 2 x /25’s
on E_A_BIGIP-13 and now completed E_B_BIGIP-13.

First will be 10.99.99.0 /25:

csr1000v-SP_C>sh ip bgp 10.99.99.0 255.255.255.128
BGP routing table entry for 10.99.99.0/25, version 38
Paths: (2 available, best #2, table default)

Advertised to update-groups:
1

Refresh Epoch 1
65001 65002 988
172.16.99.3 from 172.16.99.3 (172.1.1.1)

Origin IGP, localpref 100, valid, external
rx pathid: 0, tx pathid: 0

Refresh Epoch 1
65002 988
172.16.99.4 from 172.16.99.4 (172.1.1.2)

Origin IGP, localpref 100, valid, external, best
rx pathid: 0, tx pathid: 0x0

Second will be 10.99.99.128 /25:

csr1000v-SP_C>sh ip bgp 10.99.99.128 255.255.255.128
BGP routing table entry for 10.99.99.128/25, version 39
Paths: (2 available, best #2, table default)

Advertised to update-groups:
1

Refresh Epoch 1
65001 65002 988
172.16.99.3 from 172.16.99.3 (172.1.1.1)

Origin IGP, localpref 100, valid, external
rx pathid: 0, tx pathid: 0

Refresh Epoch 1
65002 988
172.16.99.4 from 172.16.99.4 (172.1.1.2)

Origin IGP, localpref 100, valid, external, best
rx pathid: 0, tx pathid: 0x0

Last will be 10.99.99.0 /24:

csr1000v-SP_C>sh ip bgp 10.99.99.0 255.255.255.0
BGP routing table entry for 10.99.99.0/24, version 25
Paths: (2 available, best #2, table default)

Advertised to update-groups:
1

Refresh Epoch 1
65002 988 988
172.16.99.4 from 172.16.99.4 (172.1.1.2)

Origin IGP, localpref 100, valid, external
rx pathid: 0, tx pathid: 0

Refresh Epoch 1
65001 65101, (aggregated by 65101 192.168.255.10)

168

172.16.99.3 from 172.16.99.3 (172.1.1.1)
Origin incomplete, localpref 100, valid, external, atomic-aggregate, best
rx pathid: 0, tx pathid: 0x0

Note: You will also observe that the IP Routing table on SP_C will still prefer West DC for the 10.99.99.0/24
due to previous AS Path Prepending exercise inserted from the East DC towards SP.

csr1000v-SP_C: Now let’s take a look at the ip routing table and confirm nothing has changed since we
previously added the 2 x /25’s on E_A_BIGIP-13 and now completed E_B_BIGIP-13.

First will be 10.99.99.0 /25

csr1000v-SP_C>sh ip route 10.99.99.0 255.255.255.128
Routing entry for 10.99.99.0/25

Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:19:27 ago
Routing Descriptor Blocks:

* 172.16.99.4, from 172.16.99.4, 00:19:27 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none

Second will be 10.99.99.128 /25

csr1000v-SP_C>sh ip route 10.99.99.128 255.255.255.128
Routing entry for 10.99.99.128/25

Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:19:34 ago
Routing Descriptor Blocks:

* 172.16.99.4, from 172.16.99.4, 00:19:34 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none

Last will be 10.99.99.0 /24

csr1000v-SP_C>sh ip route 10.99.99.0 255.255.255.0
Routing entry for 10.99.99.0/24

Known via "bgp 65003", distance 20, metric 0
Tag 65001, type external
Last update from 172.16.99.3 01:00:50 ago
Routing Descriptor Blocks:

* 172.16.99.3, from 172.16.99.3, 01:00:50 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65001
MPLS label: none

csr1000v-SP_C: Verify path via Virtual Server 10.99.99.102 is still via East DC with introduction of adding
the /25’s from East DC via both E_A_BIGIP-13 & E_B_BIGIP-13 .

169

csr1000v-SP_C>traceroute 10.99.99.102
Type escape sequence to abort.
Tracing the route to 10.99.99.102
VRF info: (vrf in name/id, vrf out name/id)

1 172.16.99.4 [AS 65001] 7 msec 7 msec 8 msec
2 172.16.6.4 [AS 65002] 23 msec 11 msec 11 msec
3 10.99.99.102 [AS 988] 14 msec 16 msec 14 msec

csr1000v-SP_C>

Jumpbox: Verify curl to Virtual Server 10.99.99.102 is up via East DC:

root@jumphost:~# curl 10.99.99.102
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

Jumpbox: Verify traceroute to Virtual Server 10.99.99.102 is East DC.

root@jumphost:~# traceroute 10.99.99.102
traceroute to 10.99.99.102 (10.99.99.102), 30 hops max, 60 byte packets

1 192.168.1.15 (192.168.1.15) 23.599 ms 21.587 ms 20.725 ms
2 172.16.99.4 (172.16.99.4) 25.015 ms 24.031 ms 23.148 ms
3 172.16.6.4 (172.16.6.4) 34.033 ms 33.082 ms 38.138 ms
4 10.99.99.102 (10.99.99.102) 37.173 ms 36.389 ms 53.688 ms

Note: Congratulations! This section is now complete and everything checks out as expected. We are now
going to move on to the final step and validate with a Virtual Server on the upper /25 – 10.99.99.128 /25.

Create an application configuration for a virtual server and a pool member on E_A_BIGIP-13 and
E_A_BIGIP-13 to validate reachability via 10.99.99.128/25:

Create the following virtual server and pool member on both E_A_BIGIP-13 and E_B_BIGIP-13

tmsh create ltm virtual vip3 destination 10.99.99.129:80 source-address-translation {
→˓type automap } pool pool1 profiles add { tcp http }

tmsh save sys config partitions all

E_A_BIGIP-13: Your virtual server should now show available on E_A_BIGIP-13

root@E_A_BIGIP-13:Active:Standalone] config # tmsh show ltm virtual vip3

--
Ltm::Virtual Server: vip3
--
Status

Availability : available
State : enabled
Reason : The virtual server is available
CMP : enabled
CMP Mode : all-cpus
Destination : 10.99.99.129:80

170

E_B_BIGIP-13: Your virtual server should now show available on E_B_BIGIP-13

root@E_B_BIGIP-13:Active:Standalone] config # tmsh show ltm virtual vip3

--
Ltm::Virtual Server: vip3
--
Status

Availability : available
State : enabled
Reason : The virtual server is available
CMP : enabled
CMP Mode : all-cpus
Destination : 10.99.99.129:80

Verify path via Virtual Server 10.99.99.129 which falls on 10.99.99.128/25 is via East DC with introduction
of adding the /25’s from East DC.

csr1000v-SP_C: Verify path via Virtual Server 10.99.99.129 which falls on 10.99.99.128/25 is via East DC
with introduction of adding the /25’s from East DC. You can validate via traceroute to 10.99.99.129 on SP_C:

csr1000v-SP_C>traceroute 10.99.99.129
Type escape sequence to abort.
Tracing the route to 10.99.99.129
VRF info: (vrf in name/id, vrf out name/id)

1 172.16.99.4 [AS 65001] 4 msec 6 msec 5 msec
2 172.16.6.4 [AS 65002] 7 msec 8 msec 9 msec
3 10.99.99.129 [AS 988] 7 msec 8 msec 7 msec

csr1000v-SP_C>

csr1000v-SP_C: You can validate via show ip route for 10.99.99.129 on SP_C:

csr1000v-SP_C>sh ip route 10.99.99.129
Routing entry for 10.99.99.128/25

Known via "bgp 65003", distance 20, metric 0
Tag 65002, type external
Last update from 172.16.99.4 00:24:58 ago
Routing Descriptor Blocks:

* 172.16.99.4, from 172.16.99.4, 00:24:58 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65002
MPLS label: none

csr1000v-SP_C>

Jumpbox: Verify curl to Virtual Server 10.99.99.129 is up via East DC:

root@jumphost:~# curl 10.99.99.129
<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>
root@jumphost:~#

Jumpbox: Verify traceroute to Virtual Server 10.99.99.129 is East DC.

root@jumphost:~# traceroute 10.99.99.129
traceroute to 10.99.99.129 (10.99.99.129), 30 hops max, 60 byte packets

1 192.168.1.15 (192.168.1.15) 2.569 ms 9.153 ms 9.097 ms

171

2 172.16.99.4 (172.16.99.4) 23.348 ms 22.639 ms 22.585 ms
3 172.16.6.4 (172.16.6.4) 25.018 ms 24.391 ms 23.766 ms
4 10.99.99.129 (10.99.99.129) 30.824 ms 30.220 ms 39.918 ms

root@jumphost:~#

Note: Congratulations! You have successfully completed lab 2.

5.2.3 Lab 3: Troubleshooting

Location and content of dynamic routing log files:

For each dynamic routing protocol, the BIG-IP system logs messages to a file that pertains to the route
domain in which the protocol is running. An example of the path name to a dynamic routing log file is
/var/log/zebos/rd1/zebos.log file, where rd1 is the route domain of the protocol instance.

On E_A_BIGIP configure the following logging statement for BGP:

[root@E_A_BIGIP-13:Active:Standalone] log # imish
E_A_BIGIP-13.local[0]>enable
E_A_BIGIP-13.local[0]#conf t
Enter configuration commands, one per line. End with CNTL/Z.
E_A_BIGIP-13.local[0](config)#log file /var/log/zebos/rd0/zebos.log
E_A_BIGIP-13.local[0]#wr
Building configuration...
[OK]
E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#
E_A_BIGIP-13.local[0]#exit

On E_A_BIGIP configure BGP debugging:

E_A_BIGIP-13.local[0]#deb bgp all

E_A_BIGIP-13.local[0]#sh debug bgp
BGP debugging status:

BGP debugging is on
BGP nht debugging is on
BGP nsm debugging is on
BGP events debugging is on
BGP keepalives debugging is on
BGP updates debugging is on
BGP fsm debugging is on
BGP filter debugging is on
BGP Route Flap Dampening debugging is on
BGP Bidirectional Forwarding Detection is on

E_A_BIGIP-13.local[0]#wr
Building configuration...
[OK]

On E_A_BIGIP view BGP log messages:

172

root@(E_A_BIGIP-13)(cfg-sync Standalone)(Active)(/Common)(tmos)# quit
[root@E_A_BIGIP-13:Active:Standalone] config # cd /var/log
[root@E_A_BIGIP-13:Active:Standalone] log # ls | grep zebos
zebos
[root@E_A_BIGIP-13:Active:Standalone] log # cd zebos
[root@E_A_BIGIP-13:Active:Standalone] zebos # ls
rd0
[root@E_A_BIGIP-13:Active:Standalone] zebos # cd rd0
[root@E_A_BIGIP-13:Active:Standalone] rd0 # ls
zebos.log
[root@E_A_BIGIP-13:Active:Standalone] rd0 # more zebos.log
2018/07/09 11:49:14 informational: BGP : [NETWORK] Accept Thread: Incoming conn from
→˓host 10.2.20.4 (FD=11)
2018/07/09 11:49:14 informational: BGP : [NETWORK] Accept Thread: 10.2.20.4 - No such
→˓Peer configured
2018/07/09 11:49:16 informational: BGP : [NETWORK] Accept Thread: Incoming conn from
→˓host 10.2.40.4 (FD=11)
2018/07/09 11:49:16 informational: BGP : [NETWORK] Accept Thread: 10.2.40.4 - No such
→˓Peer configured
2018/07/09 11:49:21 informational: BGP : [NETWORK] Accept Thread: Incoming conn from
→˓host 10.2.20.4 (FD=11)
2018/07/09 11:49:21 informational: BGP : [NETWORK] Accept Thread: 10.2.20.4 - No such
→˓Peer configured
2018/07/09 11:49:26 informational: BGP : [NETWORK] Accept Thread: Incoming conn from
→˓host 10.2.40.4 (FD=11)
2018/07/09 11:49:26 informational: BGP : [NETWORK] Accept Thread: 10.2.40.4 - No such
→˓Peer configured
2018/07/09 11:49:28 informational: BGP : [RIB] Scanning BGP Network Routes...
2018/07/09 11:49:30 informational: BGP : [NETWORK] Accept Thread: Incoming conn from
→˓host 10.2.20.4 (FD=11)
2018/07/09 11:49:30 informational: BGP : [NETWORK] Accept Thread: 10.2.20.4 - No such
→˓Peer configured
2018/07/09 11:49:33 informational: BGP : [INIT] peer: 10.2.20.4 GR enabled for IPv4
→˓(1).
2018/07/09 11:49:33 informational: BGP : 10.2.20.4-Outgoing [FSM] State: Idle Event:
→˓35 op_state: MASTER
2018/07/09 11:49:33 informational: BGP : 10.2.20.4-Outgoing [FSM] State: Idle Event:
→˓1 op_state: MASTER
2018/07/09 11:49:36 informational: BGP : [NETWORK] Accept Thread: Incoming conn from
→˓host 10.2.40.4 (FD=11)
2018/07/09 11:49:36 informational: BGP : [NETWORK] Accept Thread: 10.2.40.4 - No such
→˓Peer configured

On E_A_BIGIP disable BGP debugging:

E_A_BIGIP-13.local[0]#undebug bgp all

E_A_BIGIP-13.local[0]#wr
Building configuration...
[OK]

Note: This completes Lab 3

173

	Class 1: Introduction to ADC Deployments with BIG-IP LTM
	Class 2: Building the F5 Fabric
	Class 3: BIG-IP® Local Traffic Manager (LTM) - v13.1 Lab Guide
	Class 4: Troubleshoot with tcpdump and Wireshark
	Resilient Data Center Architectures with F5 BIG-IP

